Production of Biofuels and Chemicals with Ultrasound

Production of Biofuels and Chemicals with Ultrasound

Author: Zhen Fang

Publisher: Springer

Published: 2014-11-26

Total Pages: 363

ISBN-13: 9401796246

DOWNLOAD EBOOK

Conversion of biomass into chemicals and biofuels is an active research and development area as trends move to replace traditional fossil fuels with renewable resources. By integrating processing methods with ultrasound and microwave irradiation into biorefineries, the time-scale of many operations can be greatly reduced while the efficiency of the reactions can be remarkably increased so that process intensification can be achieved. “Production of Biofuels and Chemicals with Ultrasound” and “Production of Biofuels and Chemicals with Microwave” are two independent volumes in the Biofuels and Biorefineries series that take different, but complementary approaches for the pretreatment and chemical transformation of biomass into chemicals and biofuels. The volume “Ultrasound” provides current research advances and prospects in mechanistic principles of acoustic cavitation in sonochemistry, physical and chemical mechanisms in biofuel synthesis, reactor design for transesterification and esterification reactions, lipid extraction from algal biomass, microalgae extraction, biodiesel and bioethanol synthesis, practical technologies and systems, pretreatment of biomass waste sources including lignocellulosic materials, manures and sludges for biogas production, vibration-assisted pelleting, combined chemical-mechanical methods, valorization of starch-based wastes and techno-economic methodology. Each of the 12 chapters has been peer-reviewed and edited to improve both the quality of the text and the scope and coverage of the topics. Both volumes “Ultrasound” and “Microwave” are references designed for students, researchers, academicians and industrialists in the fields of chemistry and chemical engineering and include introductory chapters to highlight present concepts of the fundamental technologies and their application. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.


Bioreactors

Bioreactors

Author: Lakhveer Singh

Publisher: Elsevier

Published: 2020-04-08

Total Pages: 336

ISBN-13: 0128212640

DOWNLOAD EBOOK

Bioreactors: Sustainable Design and Industrial Applications in Mitigation of GHG Emissions presents and compares the foundational concepts, state-of-the-art design and fabrication of bioreactors. Solidly based on theoretical fundamentals, the book examines various aspects of the commercially available bioreactors, such as construction and fabrication, design, modeling and simulation, development, operation, maintenance, management and target applications for biofuels production and bio-waste management. Emerging issues in commercial feasibility are explored, constraints and pathways for upscaling, and techno-economic assessment are also covered. This book provides researchers and engineers in the biofuels and waste management sectors a clear, at-a-glance understanding of the actual potential of different advanced bioreactors for their requirements. It is a must-have reference for better-informed decisions when selecting the appropriate technology models for sustainable systems development and commercialization.


Liquid Biofuels

Liquid Biofuels

Author: Krushna Prasad Shadangi

Publisher: John Wiley & Sons

Published: 2021-06-29

Total Pages: 754

ISBN-13: 1119791987

DOWNLOAD EBOOK

Compiled by a well-known expert in the field, Liquid Biofuels provides a profound knowledge to researchers about biofuel technologies, selection of raw materials, conversion of various biomass to biofuel pathways, selection of suitable methods of conversion, design of equipment, selection of operating parameters, determination of chemical kinetics, reaction mechanism, preparation of bio-catalyst: its application in bio-fuel industry and characterization techniques, use of nanotechnology in the production of biofuels from the root level to its application and many other exclusive topics for conducting research in this area. Written with the objective of offering both theoretical concepts and practical applications of those concepts, Liquid Biofuels can be both a first-time learning experience for the student facing these issues in a classroom and a valuable reference work for the veteran engineer or scientist. The description of the detailed characterization methodologies along with the precautions required during analysis are extremely important, as are the detailed description about the ultrasound assisted biodiesel production techniques, aviation biofuels and its characterization techniques, advance in algal biofuel techniques, pre-treatment of biomass for biofuel production, preparation and characterization of bio-catalyst, and various methods of optimization. The book offers a comparative study between the various liquid biofuels obtained from different methods of production and its engine performance and emission analysis so that one can get the utmost idea to find the better biofuel as an alternative fuel. Since the book covers almost all the field of liquid biofuel production techniques, it will provide advanced knowledge to the researcher for practical applications across the energy sector. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.


The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals

The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals

Author: Kostas Triantafyllidis

Publisher: Newnes

Published: 2013-03-19

Total Pages: 607

ISBN-13: 0444563326

DOWNLOAD EBOOK

The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals describes the importance of catalysis for the sustainable production of biofuels and biochemicals, focused primarily on the state-of-the-art catalysts and catalytic processes expected to play a decisive role in the "green" production of fuels and chemicals from biomass. In addition, the book includes general elements regarding the entire chain of biomass production, conversion, environment, economy, and life-cycle assessment. Very few books are available on catalysis in production schemes using biomass or its primary conversion products, such as bio-oil and lignin. This book fills that gap with detailed discussions of: - Catalytic pyrolysis of lignocellulosic biomass - Hybrid biogasoline by co-processing in FCC units - Fischer-Tropsch synthesis to biofuels (biomass-to-liquid process) - Steam reforming of bio-oils to hydrogen With energy prices rapidly rising, environmental concerns growing, and regulatory apparatus evolving, this book is a resource with tutorial, research, and technological value for chemists, chemical engineers, policymakers, and students. - Includes catalytic reaction mechanism schemes and gives a clear understanding of catalytic processes - Includes flow diagrams of bench-, pilot- and industrial-scale catalytic processing units and demonstrates the various process technologies involved, enabling easy selection of the best process - Incorporates many tables, enabling easy comparison of data based on a critical review of the available literature


Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials

Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials

Author: Rafael Luque

Publisher: CRC Press

Published: 2013-10-28

Total Pages: 338

ISBN-13: 1466553391

DOWNLOAD EBOOK

Scarcity of resources and increasing population and energy demands are important issues of the twenty-first century. A multidisciplinary approach is needed to produce suitable alternatives—such as renewable resources—for a more sustainable future. One of the most promising and widely available renewable feedstocks is biomass, which has significant potential for conversion to materials, fuels, and chemicals. In addition, nanomaterials can be designed for a range of applications including energy storage, fuel production, and nanocatalysis. Designing nanomaterials for the valorization of biomass and waste feedstocks is a major step in advancing the application of nanomaterials and helping to move us toward the goal of a sustainable economy. Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials offers a wide-ranging approach to the development of innovative nanomaterials for biomass conversion and the production of energy and high-added-value chemicals, including biochemicals, biomaterials, and biofuels. The book is organized into three parts according to nanomaterial applications: Nanomaterials for Energy Storage and Conversion, Biofuels from Biomass Valorization Using Nanomaterials, and Production of High-Added-Value Chemicals from Biomass Using Nanomaterials. Providing a multidisciplinary perspective, this book covers the most important aspects of topics such as solar energy storage, design of carbonaceous nanomaterials as heterogeneous catalysts for producing biofuels, catalytic reforming of biogas into syngas using a range of nanoparticles, and biofuels production from waste oils and fats. It also describes the design and development of biocatalytic, solid acid, photocatalytic, and nanostructured materials for the conversion of various biomass feedstocks to valuable chemicals as intermediates to end products, such as biopolymers, bioplastics, biofuels, agrochemicals, and pharmaceutical products.


Process Systems Engineering for Biofuels Development

Process Systems Engineering for Biofuels Development

Author: Adrian Bonilla-Petriciolet

Publisher: John Wiley & Sons

Published: 2020-10-05

Total Pages: 381

ISBN-13: 1119580277

DOWNLOAD EBOOK

A comprehensive overview of current developments and applications in biofuels production Process Systems Engineering for Biofuels Development brings together the latest and most cutting-edge research on the production of biofuels. As the first book specifically devoted to process systems engineering for the production of biofuels, Process Systems Engineering for Biofuels Development covers theoretical, computational and experimental issues in biofuels process engineering. Written for researchers and postgraduate students working on biomass conversion and sustainable process design, as well as industrial practitioners and engineers involved in process design, modeling and optimization, this book is an indispensable guide to the newest developments in areas including: Enzyme-catalyzed biodiesel production Process analysis of biodiesel production (including kinetic modeling, simulation and optimization) The use of ultrasonification in biodiesel production Thermochemical processes for biomass transformation to biofuels Production of alternative biofuels In addition to the comprehensive overview of the subject of biofuels found in the Introduction of the book, the authors of various chapters have provided extensive discussions of the production and separation of biofuels via novel applications and techniques.


Production of Biofuels and Chemicals with Microwave

Production of Biofuels and Chemicals with Microwave

Author: Zhen Fang

Publisher: Springer

Published: 2014-11-26

Total Pages: 280

ISBN-13: 9401796122

DOWNLOAD EBOOK

Conversion of biomass into chemicals and biofuels is an active research and development area as trends move to replace traditional fossil fuels with renewable resources. By integrating processing methods with microwave and ultrasound irradiation into biorefineries, the time-scale of many operations can be greatly reduced while the efficiency of the reactions can be remarkably increased so that process intensification can be achieved. “Production of Biofuels and Chemicals with Microwave” and “Production of Biofuels and Chemicals with Ultrasound” are two independent volumes in the Biofuels and Biorefineries series that take different, but complementary approaches for the pretreatment and chemical transformation of biomass into chemicals and biofuels. The volume “Microwave” provides current research advances and prospects in theoretical and practical aspects of microwave irradiation including properties, effects and temperature monitoring, design of chemical reactors, synergistic effects on combining microwave, ultrasound, hydrodynamic cavitation and high-shear mixing into processes, chemical and catalytic conversion of lignin into chemicals, pyrolysis and gasification, syngas production from wastes, platform chemicals, algal biodiesel, cellulose-based nanocomposites, lignocellulosic biomass pretreatment, green chemistry metrics and energy consumption and techno-economic analysis for a catalytic pyrolysis facility that processes pellets into aromatics. Each of the 12 chapters has been peer-reviewed and edited to improve both the quality of the text and the scope and coverage of the topics. Both volumes “Microwave” and “Ultrasound” are references designed for students, researchers, academicians and industrialists in the fields of chemistry and chemical engineering and include introductory chapters to highlight present concepts of the fundamental technologies and their application. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.


Liquid Biofuels

Liquid Biofuels

Author: Krushna Prasad Shadangi

Publisher: John Wiley & Sons

Published: 2021-05-11

Total Pages: 754

ISBN-13: 1119793017

DOWNLOAD EBOOK

Compiled by a well-known expert in the field, Liquid Biofuels provides a profound knowledge to researchers about biofuel technologies, selection of raw materials, conversion of various biomass to biofuel pathways, selection of suitable methods of conversion, design of equipment, selection of operating parameters, determination of chemical kinetics, reaction mechanism, preparation of bio-catalyst: its application in bio-fuel industry and characterization techniques, use of nanotechnology in the production of biofuels from the root level to its application and many other exclusive topics for conducting research in this area. Written with the objective of offering both theoretical concepts and practical applications of those concepts, Liquid Biofuels can be both a first-time learning experience for the student facing these issues in a classroom and a valuable reference work for the veteran engineer or scientist. The description of the detailed characterization methodologies along with the precautions required during analysis are extremely important, as are the detailed description about the ultrasound assisted biodiesel production techniques, aviation biofuels and its characterization techniques, advance in algal biofuel techniques, pre-treatment of biomass for biofuel production, preparation and characterization of bio-catalyst, and various methods of optimization. The book offers a comparative study between the various liquid biofuels obtained from different methods of production and its engine performance and emission analysis so that one can get the utmost idea to find the better biofuel as an alternative fuel. Since the book covers almost all the field of liquid biofuel production techniques, it will provide advanced knowledge to the researcher for practical applications across the energy sector. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.


Microwave-Mediated Biofuel Production

Microwave-Mediated Biofuel Production

Author: Veera G. Gude

Publisher: CRC Press

Published: 2017-08-22

Total Pages: 399

ISBN-13: 1498745164

DOWNLOAD EBOOK

This book focuses on chemical syntheses and processes for biofuel production mediated by microwave energy. This is the first contribution in this area serving as a resource and guidance manual for understanding the principles, mechanisms, design, and applications of microwaves in biofuel process chemistry. Green chemistry of microwave-mediated biofuel reactions and thermodynamic potentials for the process biochemistry are the focus of this book. Microwave generation, wave propagation, process design, development and configurations, and biofuel applications are discussed in detail.


Advances in Bioenergy and Microfluidic Applications

Advances in Bioenergy and Microfluidic Applications

Author: Mohammad Reza Rahimpour

Publisher: Elsevier

Published: 2021-02-02

Total Pages: 486

ISBN-13: 012822634X

DOWNLOAD EBOOK

Since fossil fuels suffer from dangerous side effects for the environment and their resources are limited, bioenergy attracted many attentions in various aspects as an alternative solution. Therefore, increasing number of researches are conducted every year and the processes updated frequently to make them more economic and industrially beneficial. Advances in Bioenergy and Microfluidic Applications reviews recent developments in this field and covers various advanced bio-applications, which rarely are reviewed elsewhere. The chapters are started from converting biomass to valuable products and continues with applications of biomass in water-treatment, novel sorbents and membranes, refineries, microfluidic devices and etc. The book covers various routes for gaining bioenergy from biomass. Their composition, carbon contents, heat production capacities and other important factors are reviewed in details in different chapters. Then, the processes for upgrading them directly and indirectly (using metabolic engineering and ultrasonic devices) to various fuels are explained. Each process is reviewed both technically and economically and the product analysis is given. Besides, the effect of various catalysts on increasing selectivity and productivity are taken into account. Biofuels are compared with fossil fuels and challenges in the way of bioenergy production are explained. Moreover, advanced bio-applications in membranes, adsorption, waste water treatment, microfluidic devices and etc. are introduced. This book provides a good insight about such bioprocesses and microfluidics devices for researchers, students, professors and related departments and industries that care about energy resources and curious about recent advances in related methods and technologies. Despite other books which review biomass chemistry and conversion, the current book emphasize on the application of biomass in the mentioned areas. Therefore, one can gain a better and more comprehensive insight by reading the book. - Describes energy production from biomass, biomass conversion, their advantages and limitations - Describes the application of biomass in membranes, sorbents, water-treatment, refineries, and microfluidic devices - Offers a future outlook of bioenergy production and possibility to apply in the industries