Wafer Level 3-D ICs Process Technology

Wafer Level 3-D ICs Process Technology

Author: Chuan Seng Tan

Publisher: Springer Science & Business Media

Published: 2009-06-29

Total Pages: 365

ISBN-13: 0387765344

DOWNLOAD EBOOK

This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.


Handbook of Wafer Bonding

Handbook of Wafer Bonding

Author: Peter Ramm

Publisher: John Wiley & Sons

Published: 2011-11-17

Total Pages: 435

ISBN-13: 3527644237

DOWNLOAD EBOOK

The focus behind this book on wafer bonding is the fast paced changes in the research and development in three-dimensional (3D) integration, temporary bonding and micro-electro-mechanical systems (MEMS) with new functional layers. Written by authors and edited by a team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies. Part I sorts the wafer bonding technologies into four categories: Adhesive and Anodic Bonding; Direct Wafer Bonding; Metal Bonding; and Hybrid Metal/Dielectric Bonding. Part II summarizes the key wafer bonding applications developed recently, that is, 3D integration, MEMS, and temporary bonding, to give readers a taste of the significant applications of wafer bonding technologies. This book is aimed at materials scientists, semiconductor physicists, the semiconductor industry, IT engineers, electrical engineers, and libraries.


ULSI Process Integration 5

ULSI Process Integration 5

Author: Cor L. Claeys

Publisher: The Electrochemical Society

Published: 2007

Total Pages: 509

ISBN-13: 1566775728

DOWNLOAD EBOOK

The symposium provided a forum for reviewing and discussing all aspects of process integration, with special focus on nanoscaled technologies, 65 nm and beyond on DRAM, SRAM, flash memory, high density logic-low power, RF, mixed analog-digital, process integration yield, CMP chemistries, low-k processes, gate stacks, metal gates, rapid thermal processing, silicides, copper interconnects, carbon nanotubes, novel materials, high mobility substrates (SOI, sSi, SiGe, GeOI), strain engineering, and hybrid integration.