Concurrent Data Processing in Elixir

Concurrent Data Processing in Elixir

Author: Svilen Gospodinov

Publisher: Pragmatic Bookshelf

Published: 2021-07-25

Total Pages: 221

ISBN-13: 1680508962

DOWNLOAD EBOOK

Learn different ways of writing concurrent code in Elixir and increase your application's performance, without sacrificing scalability or fault-tolerance. Most projects benefit from running background tasks and processing data concurrently, but the world of OTP and various libraries can be challenging. Which Supervisor and what strategy to use? What about GenServer? Maybe you need back-pressure, but is GenStage, Flow, or Broadway a better choice? You will learn everything you need to know to answer these questions, start building highly concurrent applications in no time, and write code that's not only fast, but also resilient to errors and easy to scale. Whether you are building a high-frequency stock trading application or a consumer web app, you need to know how to leverage concurrency to build applications that are fast and efficient. Elixir and the OTP offer a range of powerful tools, and this guide will show you how to choose the best tool for each job, and use it effectively to quickly start building highly concurrent applications. Learn about Tasks, supervision trees, and the different types of Supervisors available to you. Understand why processes and process linking are the building blocks of concurrency in Elixir. Get comfortable with the OTP and use the GenServer behaviour to maintain process state for long-running jobs. Easily scale the number of running processes using the Registry. Handle large volumes of data and traffic spikes with GenStage, using back-pressure to your advantage. Create your first multi-stage data processing pipeline using producer, consumer, and producer-consumer stages. Process large collections with Flow, using MapReduce and more in parallel. Thanks to Broadway, you will see how easy it is to integrate with popular message broker systems, or even existing GenStage producers. Start building the high-performance and fault-tolerant applications Elixir is famous for today. What You Need: You'll need Elixir 1.9+ and Erlang/OTP 22+ installed on a Mac OS X, Linux, or Windows machine.


Data Processing Handbook for Complex Biological Data Sources

Data Processing Handbook for Complex Biological Data Sources

Author: Gauri Misra

Publisher: Academic Press

Published: 2019-03-23

Total Pages: 191

ISBN-13: 0128172800

DOWNLOAD EBOOK

Data Processing Handbook for Complex Biological Data provides relevant and to the point content for those who need to understand the different types of biological data and the techniques to process and interpret them. The book includes feedback the editor received from students studying at both undergraduate and graduate levels, and from her peers. In order to succeed in data processing for biological data sources, it is necessary to master the type of data and general methods and tools for modern data processing. For instance, many labs follow the path of interdisciplinary studies and get their data validated by several methods. Researchers at those labs may not perform all the techniques themselves, but either in collaboration or through outsourcing, they make use of a range of them, because, in the absence of cross validation using different techniques, the chances for acceptance of an article for publication in high profile journals is weakened. - Explains how to interpret enormous amounts of data generated using several experimental approaches in simple terms, thus relating biology and physics at the atomic level - Presents sample data files and explains the usage of equations and web servers cited in research articles to extract useful information from their own biological data - Discusses, in detail, raw data files, data processing strategies, and the web based sources relevant for data processing


Processing Data

Processing Data

Author: Linda Brookover Bourque

Publisher: SAGE

Published: 1992-06-06

Total Pages: 102

ISBN-13: 9780803947412

DOWNLOAD EBOOK

This volume highlights the theory that decisions made during the design of a data collection instrument influence the kind of data and the format of the data that are available for analysis. Opening with a discussion on the selection of the data collection technique(s) and how this impacts on data processing and the data for later analysis, the book covers key issues such as: should you create your own instrument for a questionnaire? how do you test a questionnaire? what are the characteristics of good data processing? how to deal with missing data? how to scale an evaluation and create subfiles for analysis? In addition, each major section concludes with examples and when appropriate, directs the reader to commonly available computer software that can aid in data processing.


Knowledge Graphs and Big Data Processing

Knowledge Graphs and Big Data Processing

Author: Valentina Janev

Publisher: Springer Nature

Published: 2020-07-15

Total Pages: 212

ISBN-13: 3030531996

DOWNLOAD EBOOK

This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.


Intelligent Data Sensing and Processing for Health and Well-being Applications

Intelligent Data Sensing and Processing for Health and Well-being Applications

Author: Miguel Antonio Wister Ovando

Publisher: Academic Press

Published: 2018-07-26

Total Pages: 316

ISBN-13: 0128123206

DOWNLOAD EBOOK

Intelligent Data Sensing and Processing for Health and Well-being Applications uniquely combines full exploration of the latest technologies for sensor-collected intelligence with detailed coverage of real-case applications for healthcare and well-being at home and in the workplace. Forward-thinking in its approach, the book presents concepts and technologies needed for the implementation of today's mobile, pervasive and ubiquitous systems, and for tomorrow's IoT and cyber-physical systems. Users will find a detailed overview of the fundamental concepts of gathering, processing and analyzing data from devices disseminated in the environment, as well as the latest proposals for collecting, processing and abstraction of data-sets. In addition, the book addresses algorithms, methods and technologies for diagnosis and informed decision-making for healthcare and well-being. Topics include emotional interface with ambient intelligence and emerging applications in detection and diagnosis of neurological diseases. Finally, the book explores the trends and challenges in an array of areas, such as applications for intelligent monitoring in the workplace for well-being, acquiring data traffic in cities to improve the assistance of first aiders, and applications for supporting the elderly at home. - Examines the latest applications and future directions for mobile data sensing in an array of health and well-being scenarios - Combines leading computing paradigms and technologies, development applications, empirical studies, and future trends in the multidisciplinary field of smart sensors, smart sensor networks, data analysis and machine intelligence methods - Features an analysis of security, privacy and ethical issues in smart sensor health and well-being applications - Equips readers interested in interdisciplinary projects in ubiquitous computing or pervasive computing and ambient intelligence with the latest trends and developments


Data-Intensive Text Processing with MapReduce

Data-Intensive Text Processing with MapReduce

Author: Jimmy Lin

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 171

ISBN-13: 3031021363

DOWNLOAD EBOOK

Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion of MapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks


Data Processing

Data Processing

Author: Susan Wooldridge

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 272

ISBN-13: 1483105245

DOWNLOAD EBOOK

Data Processing: Made Simple, Second Edition presents discussions of a number of trends and developments in the world of commercial data processing. The book covers the rapid growth of micro- and mini-computers for both home and office use; word processing and the 'automated office'; the advent of distributed data processing; and the continued growth of database-oriented systems. The text also discusses modern digital computers; fundamental computer concepts; information and data processing requirements of commercial organizations; and the historical perspective of the computer industry. The computer hardware and software and the development and implementation of a computer system are considered. The book tackles careers in data processing; the tasks carried out by the data processing department; and the way in which the data processing department fits in with the rest of the organization. The text concludes by examining some of the problems of running a data processing department, and by suggesting some possible solutions. Computer science students will find the book invaluable.


Data and Text Processing for Health and Life Sciences

Data and Text Processing for Health and Life Sciences

Author: Francisco M. Couto

Publisher: Springer

Published: 2019-06-10

Total Pages: 107

ISBN-13: 3030138453

DOWNLOAD EBOOK

This open access book is a step-by-step introduction on how shell scripting can help solve many of the data processing tasks that Health and Life specialists face everyday with minimal software dependencies. The examples presented in the book show how simple command line tools can be used and combined to retrieve data and text from web resources, to filter and mine literature, and to explore the semantics encoded in biomedical ontologies. To store data this book relies on open standard text file formats, such as TSV, CSV, XML, and OWL, that can be open by any text editor or spreadsheet application. The first two chapters, Introduction and Resources, provide a brief introduction to the shell scripting and describe popular data resources in Health and Life Sciences. The third chapter, Data Retrieval, starts by introducing a common data processing task that involves multiple data resources. Then, this chapter explains how to automate each step of that task by introducing the required commands line tools one by one. The fourth chapter, Text Processing, shows how to filter and analyze text by using simple string matching techniques and regular expressions. The last chapter, Semantic Processing, shows how XPath queries and shell scripting is able to process complex data, such as the graphs used to specify ontologies. Besides being almost immutable for more than four decades and being available in most of our personal computers, shell scripting is relatively easy to learn by Health and Life specialists as a sequence of independent commands. Comprehending them is like conducting a new laboratory protocol by testing and understanding its procedural steps and variables, and combining their intermediate results. Thus, this book is particularly relevant to Health and Life specialists or students that want to easily learn how to process data and text, and which in return may facilitate and inspire them to acquire deeper bioinformatics skills in the future.


Large Scale and Big Data

Large Scale and Big Data

Author: Sherif Sakr

Publisher: CRC Press

Published: 2014-06-25

Total Pages: 640

ISBN-13: 1466581506

DOWNLOAD EBOOK

Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments. The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-based deployment models. The book’s second section examines the usage of advanced Big Data processing techniques in different domains, including semantic web, graph processing, and stream processing. The third section discusses advanced topics of Big Data processing such as consistency management, privacy, and security. Supplying a comprehensive summary from both the research and applied perspectives, the book covers recent research discoveries and applications, making it an ideal reference for a wide range of audiences, including researchers and academics working on databases, data mining, and web scale data processing. After reading this book, you will gain a fundamental understanding of how to use Big Data-processing tools and techniques effectively across application domains. Coverage includes cloud data management architectures, big data analytics visualization, data management, analytics for vast amounts of unstructured data, clustering, classification, link analysis of big data, scalable data mining, and machine learning techniques.