Process flowsheeting concerns the use of computers to stimulate and design chemical plant of all types, such as petroleum refineries, petrochemical complexes or even food factories. In this 1979 introduction to the topic the authors examine the role of flowsheeting in process plant design and look at the various techniques on which computer-aided systems may be based. For each one of these approaches the advantages and disadvantages are clearly stated and the four most important methods are described in detail. In each case the motivation for its development is analysed and its use is illustrated by a number of practical examples. Particular attention is devoted to the underlying technology of process flowsheeting systems, and an introduction to the analysis of degrees of freedom in flowsheeting and a guide to further reading are also included. This book will still hold value for those interested in the historical development of process flowsheeting.
This textbook presents a general multi-objective optimization framework for optimizing chemical processes by implementing a link between process simulators and metaheuristic techniques. The proposed approach is general and shows how to implement links between different process simulators such as Aspen Plus®, HYSIS®, Super Pro Designer® linked to a variety of metaheuristic techniques implemented in Matlab®, Excel®, C++, and others, eliminating the numerical complications through the optimization process. Furthermore, the proposed framework allows the use of thermodynamic, design and constitutive equations implemented in the process simulator to implement any process. Aimed at graduate and undergraduate students, it presents introductory chapters for process simulators and metaheuristic optimization techniques and provides several worked exercises as well as proposed exercises. In addition, accompanying tutorial videos clearly explaining the implemented methodologies are available online. Also, some Matlab® routines are included as electronic supporting material.
This book presents the latest advances in flowsheet simulation of solids processes, focusing on the dynamic behaviour of systems with interconnected solids processing units, but also covering stationary simulation. The book includes the modelling of solids processing units, for example for comminution, sifting and particle formulation and also for reaction systems. Furthermore, it examines new approaches for the description of solids and their property distributions and for the mathematical treatment of flowsheets with multivariate population balances.
Chemical Process Structures and Information Flows focuses on the role of computers in the understanding of chemical processes, including the use of simulation and optimization in computational problems. The book first underscores graphs and digraphs and pipeline networks. Discussions focus on cutsets and connectivity, directed graphs, trees and circuits, matrix representation of digraphs and graphs, reachability matrix, alternative problem formulations and specifications, and steady state conditions in cyclic networks. The manuscript also ponders on computation sequence in process flowsheet calculations and sparse matrix computation. The publication examines scheduling and design of batch plants, including scheduling of products and operations, characteristics of batch processes, branch and bound methods, and multipurpose batch plants. The text also elaborates on observability and redundancy and process data reconciliation and rectification. The manuscript is a valuable reference for chemical engineering students and readers interested in chemical processes and information flow.
This comprehensive work shows how to design and develop innovative, optimal and sustainable chemical processes by applying the principles of process systems engineering, leading to integrated sustainable processes with 'green' attributes. Generic systematic methods are employed, supported by intensive use of computer simulation as a powerful tool for mastering the complexity of physical models. New to the second edition are chapters on product design and batch processes with applications in specialty chemicals, process intensification methods for designing compact equipment with high energetic efficiency, plantwide control for managing the key factors affecting the plant dynamics and operation, health, safety and environment issues, as well as sustainability analysis for achieving high environmental performance. All chapters are completely rewritten or have been revised. This new edition is suitable as teaching material for Chemical Process and Product Design courses for graduate MSc students, being compatible with academic requirements world-wide. The inclusion of the newest design methods will be of great value to professional chemical engineers. - Systematic approach to developing innovative and sustainable chemical processes - Presents generic principles of process simulation for analysis, creation and assessment - Emphasis on sustainable development for the future of process industries
This book offers a comprehensive coverage of process simulation and flowsheeting, useful for undergraduate students of Chemical Engineering and Process Engineering as theoretical and practical support in Process Design, Process Simulation, Process Engineering, Plant Design, and Process Control courses. The main concepts related to process simulation and application tools are presented and discussed in the framework of typical problems found in engineering design. The topics presented in the chapters are organized in an inductive way, starting from the more simplistic simulations up to some complex problems.
The Leading Integrated Chemical Process Design Guide: Now with New Problems, New Projects, and More More than ever, effective design is the focal point of sound chemical engineering. Analysis, Synthesis, and Design of Chemical Processes, Third Edition, presents design as a creative process that integrates both the big picture and the small details–and knows which to stress when, and why. Realistic from start to finish, this book moves readers beyond classroom exercises into open-ended, real-world process problem solving. The authors introduce integrated techniques for every facet of the discipline, from finance to operations, new plant design to existing process optimization. This fully updated Third Edition presents entirely new problems at the end of every chapter. It also adds extensive coverage of batch process design, including realistic examples of equipment sizing for batch sequencing; batch scheduling for multi-product plants; improving production via intermediate storage and parallel equipment; and new optimization techniques specifically for batch processes. Coverage includes Conceptualizing and analyzing chemical processes: flow diagrams, tracing, process conditions, and more Chemical process economics: analyzing capital and manufacturing costs, and predicting or assessing profitability Synthesizing and optimizing chemical processing: experience-based principles, BFD/PFD, simulations, and more Analyzing process performance via I/O models, performance curves, and other tools Process troubleshooting and “debottlenecking” Chemical engineering design and society: ethics, professionalism, health, safety, and new “green engineering” techniques Participating successfully in chemical engineering design teams Analysis, Synthesis, and Design of Chemical Processes, Third Edition, draws on nearly 35 years of innovative chemical engineering instruction at West Virginia University. It includes suggested curricula for both single-semester and year-long design courses; case studies and design projects with practical applications; and appendixes with current equipment cost data and preliminary design information for eleven chemical processes–including seven brand new to this edition.
A comprehensive overview of current developments and applications in biofuels production Process Systems Engineering for Biofuels Development brings together the latest and most cutting-edge research on the production of biofuels. As the first book specifically devoted to process systems engineering for the production of biofuels, Process Systems Engineering for Biofuels Development covers theoretical, computational and experimental issues in biofuels process engineering. Written for researchers and postgraduate students working on biomass conversion and sustainable process design, as well as industrial practitioners and engineers involved in process design, modeling and optimization, this book is an indispensable guide to the newest developments in areas including: Enzyme-catalyzed biodiesel production Process analysis of biodiesel production (including kinetic modeling, simulation and optimization) The use of ultrasonification in biodiesel production Thermochemical processes for biomass transformation to biofuels Production of alternative biofuels In addition to the comprehensive overview of the subject of biofuels found in the Introduction of the book, the authors of various chapters have provided extensive discussions of the production and separation of biofuels via novel applications and techniques.