Proceedings of the 2023 Water Reactor Fuel Performance Meeting

Proceedings of the 2023 Water Reactor Fuel Performance Meeting

Author: Jianqiao Liu

Publisher: Springer Nature

Published: 2023-11-30

Total Pages: 384

ISBN-13: 9819971578

DOWNLOAD EBOOK

The Water Reactor Fuel Performance Meeting (WRFPM) held in Asia has merged with TopFuel in Europe and LWR Fuel Performance in the United States to form the globally most influential conference in the field of nuclear fuel research. WRFPM2023 is organized by Chinese Nuclear Society (CNS) in cooperation with the Atomic Energy Society of Japan (AESJ), Korean Nuclear Society (KNS), European Nuclear Society (ENS), American Nuclear Society (ANS), the Interna-tional Atomic Energy Agency (IAEA) with the support from China Nuclear Energy In¬dustry Corporation (CNEIC) and TVEL. Conference Topics: 1. Advances in water reactor fuel technology and testing 2. Operation and experience 3. Transient and off-normal fuel behaviour and safety related issues 4. Fuel cycle, used fuel storage and transportation 5. Innovative fuel and related issues 6. Fuel modelling, analysis and methodology


Materials Ageing and Degradation in Light Water Reactors

Materials Ageing and Degradation in Light Water Reactors

Author: K L Murty

Publisher: Elsevier

Published: 2013-02-18

Total Pages: 441

ISBN-13: 0857097458

DOWNLOAD EBOOK

Light water reactors (LWRs) are the predominant class of nuclear power reactors in operation today; however, ageing and degradation can influence both their performance and lifetime. Knowledge of these factors is therefore critical to safe, continuous operation. Materials ageing and degradation in light water reactors provides a comprehensive guide to prevalent deterioration mechanisms, and the approaches used to handle their effects.Part one introduces fundamental ageing issues and degradation mechanisms. Beginning with an overview of ageing and degradation issues in LWRs, the book goes on to discuss corrosion in pressurized water reactors and creep deformation of materials in LWRs. Part two then considers materials' ageing and degradation in specific LWR components. Applications of zirconium alloys in LWRs are discussed, along with the ageing of electric cables. Materials management strategies for LWRs are then the focus of part three. Materials management strategies for pressurized water reactors and VVER reactors are considered before the book concludes with a discussion of materials-related problems faced by LWR operators and corresponding research needs.With its distinguished editor and international team of expert contributors, Materials ageing and degradation in light water reactors is an authoritative review for anyone requiring an understanding of the performance and durability of this type of nuclear power plant, including plant operators and managers, nuclear metallurgists, governmental and regulatory safety bodies, and researchers, scientists and academics working in this area. - Introduces the fundamental ageing issues and degradation mechanisms associated with this class of nuclear power reactors - Considers materials ageing and degradation in specific light water reactor components, including properties, performance and inspection - Chapters also focus on material management strategies


NUREG/CR.

NUREG/CR.

Author: U.S. Nuclear Regulatory Commission

Publisher:

Published: 1981

Total Pages: 52

ISBN-13:

DOWNLOAD EBOOK


Fundamentals of Nuclear Engineering

Fundamentals of Nuclear Engineering

Author: Brent J. Lewis

Publisher: John Wiley & Sons

Published: 2017-06-19

Total Pages: 980

ISBN-13: 1119271495

DOWNLOAD EBOOK

Fundamental of Nuclear Engineering is derived from over 25 years of teaching undergraduate and graduate courses on nuclear engineering. The material has been extensively class tested and provides the most comprehensive textbook and reference on the fundamentals of nuclear engineering. It includes a broad range of important areas in the nuclear engineering field; nuclear and atomic theory; nuclear reactor physics, design, control/dynamics, safety and thermal-hydraulics; nuclear fuel engineering; and health physics/radiation protection. It also includes the latest information that is missing in traditional texts, such as space radiation. The aim of the book is to provide a source for upper level undergraduate and graduate students studying nuclear engineering.


Oxidation and the Testing of Turbine Oils

Oxidation and the Testing of Turbine Oils

Author: Cyril A. Migdal

Publisher: ASTM International

Published: 2008

Total Pages: 929

ISBN-13: 0803134932

DOWNLOAD EBOOK

This work presents papers from a December 2005 symposium held in Norfolk, Virginia, and sponsored by ASTM Committee D2 on Petroleum Products and Lubricants and its Subcommittees D02.09 on Oxidation and D02.C0 on Turbine Oils. Contributors include equipment manufacturers, end users, lubricant producers, lubricant additive suppliers, test equipment manufacturers, and standard test method developers. They share information on industry trends, evolving technologies, and changing equipment designs and operating conditions, with a focus on how these factors impact oxidation. Some topics covered include turbine oil performance limits, a new form of the rotating pressure vessel oxidation test, and degradation mechanisms leading to sludge and varnish in modern turbine oil formulations. B&w photos are included. There is no subject index. Migdal is affiliated with Chemtura Corporation.


Structural Materials in Nuclear Power Systems

Structural Materials in Nuclear Power Systems

Author: J. T. Adrian Roberts

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 493

ISBN-13: 1468471945

DOWNLOAD EBOOK

In recent years the effort devoted to assuring both the safety and reliability of commercial nuclear fission power reactors has markedly increased. The incentives for performing this work are large since the resulting im provement in plant productivity translates into lower fuel costs and, more importantly, reduced reliance on imported oil. Reliability and availability of nuclear power plants, whether fission or fusion, demand that more attention be focused on the behavior of materials. Recent experiences with fission power indicate that the basic properties of materials, which categorize their reliable behavior under specified conditions, need reinforcement to assure trouble-free operation for the expected service life. The pursuit of additional information con tinues to demand a better understanding of some of the observed anom alous behavior, and of the margin of resistance of materials to unpre dictable service conditions. It is also apparent that, next to plasma heating and confinement, materials selection represents the most serious chal lenge to the introduction of fusion power. The recognition of the importance of materials performance to nu clear plant performance has sustained a multimillion dollar worldwide research and development effort that has yielded significant results, both in quantification of the performance limits of materials in current use and the development and qualification of new materials. Most of this infor mation appears in the open literature in the form of research reports, journal articles, and conference proceedings.