Bibliographic Guide to Conference Publications

Bibliographic Guide to Conference Publications

Author: New York Public Library. Research Libraries

Publisher:

Published: 1989

Total Pages: 660

ISBN-13:

DOWNLOAD EBOOK

Vols. for 1975- include publications cataloged by the Research Libraries of the New York Public Library with additional entries from the Library of Congress MARC tapes.


Soils and Waves

Soils and Waves

Author: J. Carlos Santamarina

Publisher:

Published: 2001

Total Pages: 520

ISBN-13:

DOWNLOAD EBOOK

J. Carlos Santamarina, Georgia Institute of Technology, USA in collaboration with Katherine A. Klein, University of Toronto, Canada; Moheb A. Fam, Cairo University, Egypt Soils are unique materials. Analogous to all other particulate materials, their properties depend on environmental parameters, such as confinement and fluid characteristics. While their behavior is complex, simple micromechanical analyses at the particle level provide unparalleled insight. Furthermore, elastic and electromagnetic waves can be effectively used to gain complementary information about the particulate medium, leading to unique possibilities for studies in engineering and science, including field applications for site assessment and process monitoring. This book is divided into five parts. The first part dwells on the problem of scale and includes a general introduction to materials. In the second part, the behavior of particulate materials is reviewed, with emphasis on the microscale interpretation of macroscale behavior. Fundamental differences between fine and coarse particulate materials are highlighted. The third and fourth parts center on the propagation of mechanical and electromagnetic waves in particulate materials, addressing phenomena such as stiffness, polarization and losses. These two units include laboratory techniques to measure the elastic and electromagnetic spectral response of particulate materials, and an extensive compilation of experimental data. Finally, the fifth part applies elastic and electromagnetic waves to monitoring process in soils. Emphasis is placed on clear, simple analyses and explanations of complex physical phenomena, making this book ideal for self-study. Furthermore, no other book provides such an in-depth description of soils and their behavior and the interaction of elastic and electromagnetic waves and particulate materials (including material data and experimental methods). Thus, this is an invaluable reference for postgraduates, research scientists and practitioners in geotechnical, civil and environmental engineering, as well as scientists in related areas such as physics, geophysics and materials science.


Advanced Materials

Advanced Materials

Author: Ivan A. Parinov

Publisher: Springer Nature

Published: 2020-06-16

Total Pages: 628

ISBN-13: 3030451208

DOWNLOAD EBOOK

This book presents selected peer-reviewed contributions from the 2019 International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2019 (Hanoi, Vietnam, 7–10 November, 2019), divided into four scientific themes: processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystals, materials and composites with special properties. It presents nanotechnology approaches, modern environmentally friendly techniques and physical-chemical and mechanical studies of the structural-sensitive and physical–mechanical properties of materials. The obtained results are based on new achievements in material sciences and computational approaches, methods and algorithms (in particular, finite-element and finite-difference modeling) applied to the solution of different technological, mechanical and physical problems. The obtained results have a significant interest for theory, modeling and test of advanced materials. Other results are devoted to promising devices demonstrating high accuracy, longevity and new opportunities to work effectively under critical temperatures and high pressures, in aggressive media, etc. These devices demonstrate improved comparative characteristics, caused by developed materials and composites, allowing investigation of physio-mechanical processes and phenomena based on scientific and technological progress.