Fundamentals of Materials for Energy and Environmental Sustainability

Fundamentals of Materials for Energy and Environmental Sustainability

Author: David S. Ginley

Publisher: Cambridge University Press

Published: 2011-11-30

Total Pages: 773

ISBN-13: 1139502689

DOWNLOAD EBOOK

How will we meet rising energy demands? What are our options? Are there viable long-term solutions for the future? Learn the fundamental physical, chemical and materials science at the heart of renewable/non-renewable energy sources, future transportation systems, energy efficiency and energy storage. Whether you are a student taking an energy course or a newcomer to the field, this textbook will help you understand critical relationships between the environment, energy and sustainability. Leading experts provide comprehensive coverage of each topic, bringing together diverse subject matter by integrating theory with engaging insights. Each chapter includes helpful features to aid understanding, including a historical overview to provide context, suggested further reading and questions for discussion. Every subject is beautifully illustrated and brought to life with full color images and color-coded sections for easy browsing, making this a complete educational package. Fundamentals of Materials for Energy and Environmental Sustainability will enable today's scientists and educate future generations.


The SAE Journal

The SAE Journal

Author:

Publisher:

Published: 1960

Total Pages: 1276

ISBN-13:

DOWNLOAD EBOOK

Vols. 30-54 (1932-46) issued in 2 separately paged sections: General editorial section and a Transactions section. Beginning in 1947, the Transactions section is continued as SAE quarterly transactions.


On the Edge of Magnetic Fusion Devices

On the Edge of Magnetic Fusion Devices

Author: Sergei Krasheninnikov

Publisher: Springer Nature

Published: 2020-09-07

Total Pages: 269

ISBN-13: 3030495949

DOWNLOAD EBOOK

This book reviews the current state of understanding concerning edge plasma, which bridges hot fusion plasma, with a temperature of roughly one million degrees Kelvin with plasma-facing materials, which have melting points of only a few thousand degrees Kelvin. In a fact, edge plasma is one of the keys to solution for harnessing fusion energy in magnetic fusion devices. The physics governing the processes at work in the edge plasma involves classical and anomalous transport of multispecies plasma, neutral gas dynamics, atomic physics effects, radiation transport, plasma-material interactions, and even the transport of plasma species within the plasma-facing materials. The book starts with simple physical models, then moves on to rigorous theoretical considerations and state-of-the-art simulation tools that are capable of capturing the most important features of the edge plasma phenomena. The authors compare the conclusions arising from the theoretical and computational analysis with the available experimental data. They also discuss the remaining gaps in their models and make projections for phenomena related to edge plasma in magnetic fusion reactors.