Proceedings of the ... Midwest Symposium on Circuits and Systems
Author:
Publisher:
Published: 2003
Total Pages: 632
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 2003
Total Pages: 632
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 1982
Total Pages: 572
ISBN-13:
DOWNLOAD EBOOKAuthor: Chris Toumazou
Publisher: Springer Science & Business Media
Published: 2007-05-08
Total Pages: 1065
ISBN-13: 0306476738
DOWNLOAD EBOOKAs the frequency of communication systems increases and the dimensions of transistors are reduced, more and more stringent performance requirements are placed on analog circuits. This is a trend that is bound to continue for the foreseeable future and while it does, understanding performance trade-offs will constitute a vital part of the analog design process. It is the insight and intuition obtained from a fundamental understanding of performance conflicts and trade-offs, that ultimately provides the designer with the basic tools necessary for effective and creative analog design. Trade-offs in Analog Circuit Design, which is devoted to the understanding of trade-offs in analog design, is quite unique in that it draws together fundamental material from, and identifies interrelationships within, a number of key analog circuits. The book covers ten subject areas: Design methodology, Technology, General Performance, Filters, Switched Circuits, Oscillators, Data Converters, Transceivers, Neural Processing, and Analog CAD. Within these subject areas it deals with a wide diversity of trade-offs ranging from frequency-dynamic range and power, gain-bandwidth, speed-dynamic range and phase noise, to tradeoffs in design for manufacture and IC layout. The book has by far transcended its original scope and has become both a designer's companion as well as a graduate textbook. An important feature of this book is that it promotes an intuitive approach to understanding analog circuits by explaining fundamental relationships and, in many cases, providing practical illustrative examples to demonstrate the inherent basic interrelationships and trade-offs. Trade-offs in Analog Circuit Design draws together 34 contributions from some of the world's most eminent analog circuits-and-systems designers to provide, for the first time, a comprehensive text devoted to a very important and timely approach to analog circuit design.
Author: Fei Yuan
Publisher: CRC Press
Published: 2018-09-03
Total Pages: 403
ISBN-13: 1482298740
DOWNLOAD EBOOKTime-mode circuits, where information is represented by time difference between digital events, offer a viable and technology-friendly means to realize mixed-mode circuits and systems in nanometer complementary metal-oxide semiconductor (CMOS) technologies. Various architectures of time-based signal processing and design techniques of CMOS time-mode circuits have emerged; however, an in-depth examination of the principles of time-based signal processing and design techniques of time-mode circuits has not been available—until now. CMOS Time-Mode Circuits and Systems: Fundamentals and Applications is the first book to deliver a comprehensive treatment of CMOS time-mode circuits and systems. Featuring contributions from leading experts, this authoritative text contains a rich collection of literature on time-mode circuits and systems. The book begins by presenting a critical comparison of voltage-mode, current-mode, and time-mode signaling for mixed-mode signal processing and then: Covers the fundamentals of time-mode signal processing, such as voltage-to-time converters, all-digital phase-locked loops, and frequency synthesizers Investigates the performance characteristics, architecture, design techniques, and implementation of time-to-digital converters Discusses time-mode delta-sigma-based analog-to-digital converters, placing a great emphasis on time-mode quantizers Includes a detailed study of ultra-low-power integrated time-mode temperature measurement systems CMOS Time-Mode Circuits and Systems: Fundamentals and Applications provides a valuable reference for circuit design engineers, hardware system engineers, graduate students, and others seeking to master this fast-evolving field.
Author: Adam Glowacz
Publisher: MDPI
Published: 2020-03-13
Total Pages: 604
ISBN-13: 3039282948
DOWNLOAD EBOOKThis Special Issue with 35 published articles shows the significance of the topic “Signal Processing and Analysis of Electrical Circuit”. This topic has been gaining increasing attention in recent times. The presented articles can be categorized into four different areas: signal processing and analysis methods of electrical circuits; electrical measurement technology; applications of signal processing of electrical equipment; fault diagnosis of electrical circuits. It is a fact that the development of electrical systems, signal processing methods, and circuits has been accelerating. Electronics applications related to electrical circuits and signal processing methods have gained noticeable attention in recent times. The methods of signal processing and electrical circuits are widely used by engineers and scientists all over the world. The constituent papers represent a significant contribution to electronics and present applications that can be used in industry. Further improvements to the presented approaches are required for realizing their full potential.
Author: Wai-Kai Chen
Publisher: CRC Press
Published: 2018-12-14
Total Pages: 3364
ISBN-13: 1000006573
DOWNLOAD EBOOKStandard-setting, groundbreaking, authoritative, comprehensive—these often overused words perfectly describe The Circuits and Filters Handbook, Third Edition. This standard-setting resource has documented the momentous changes that have occurred in the field of electrical engineering, providing the most comprehensive coverage available. More than 150 contributing experts offer in-depth insights and enlightened perspectives into standard practices and effective techniques that will make this set the first—and most likely the only—tool you select to help you with problem solving. In its third edition, this groundbreaking bestseller surveys accomplishments in the field, providing researchers and designers with the comprehensive detail they need to optimize research and design. All five volumes include valuable information on the emerging fields of circuits and filters, both analog and digital. Coverage includes key mathematical formulas, concepts, definitions, and derivatives that must be mastered to perform cutting-edge research and design. The handbook avoids extensively detailed theory and instead concentrates on professional applications, with numerous examples provided throughout. The set includes more than 2500 illustrations and hundreds of references. Available as a comprehensive five-volume set, each of the subject-specific volumes can also be purchased separately.
Author: Amit Kumar Singh
Publisher: MDPI
Published: 2021-05-10
Total Pages: 218
ISBN-13: 3036508767
DOWNLOAD EBOOKThe increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends.
Author: Dominic Maurath
Publisher: Springer
Published: 2014-09-16
Total Pages: 309
ISBN-13: 9401792720
DOWNLOAD EBOOKChip-integrated power management solutions are a must for ultra-low power systems. This enables not only the optimization of innovative sensor applications. It is also essential for integration and miniaturization of energy harvesting supply strategies of portable and autonomous monitoring systems. The book particularly addresses interfaces for energy harvesting, which are the key element to connect micro transducers to energy storage elements. Main features of the book are: - A comprehensive technology and application review, basics on transducer mechanics, fundamental circuit and control design, prototyping and testing, up to sensor system supply and applications. - Novel interfacing concepts - including active rectifiers, MPPT methods for efficient tracking of DC as well as AC sources, and a fully-integrated charge pump for efficient maximum AC power tracking at sub-100μW ultra-low power levels. The chips achieve one of widest presented operational voltage range in standard CMOS technology: 0.44V to over 4.1V. - Two special chapters on analog circuit design – it studies benefits and obstacles on implemented chip prototypes with three goals: ultra- low power, wide supply voltage range, and integration with standard technologies. Alternative design approaches are pursued using bulk-input transistor stages in forward-bias operation for amplifiers, modulators, and references. - Comprehensive Appendix – with additional fundamental analysis, design and scaling guidelines, circuit implementation tables and dimensions, schematics, source code listings, bill of material, etc. The discussed prototypes and given design guidelines are tested with real vibration transducer devices. The intended readership is graduate students in advanced courses, academics and lecturers, R&D engineers.
Author: John D. Cressler
Publisher: CRC Press
Published: 2017-12-19
Total Pages: 1041
ISBN-13: 143987431X
DOWNLOAD EBOOKUnfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.
Author: Pedram Khalili Amiri
Publisher: MDPI
Published: 2020-04-16
Total Pages: 276
ISBN-13: 3039285025
DOWNLOAD EBOOKComputing systems are undergoing a transformation from logic-centric towards memory-centric architectures, where overall performance and energy efficiency at the system level are determined by the density, performance, functionality and efficiency of the memory, rather than the logic sub-system. This is driven by the requirements of data-intensive applications in artificial intelligence, autonomous systems, and edge computing. We are at an exciting time in the semiconductor industry where several innovative device and technology concepts are being developed to respond to these demands, and capture shares of the fast growing market for AI-related hardware. This special issue is devoted to highlighting, discussing and presenting the latest advancements in this area, drawing on the best work on emerging memory devices including magnetic, resistive, phase change, and other types of memory. The special issue is interested in work that presents concepts, ideas, and recent progress ranging from materials, to memory devices, physics of switching mechanisms, circuits, and system applications, as well as progress in modeling and design tools. Contributions that bridge across several of these layers are especially encouraged.