Divided roughly into two sections, this book provides a brief history of the development of ECG along with heart rate variability (HRV) algorithms and the engineering innovations over the last decade in this area. It reviews clinical research, presents an overview of the clinical field, and the importance of heart rate variability in diagnosis. The book then discusses the use of particular ECG and HRV algorithms in the context of clinical applications.
In recent years, Higher Order Neural Networks (HONNs) have been widely adopted by researchers for applications in control signal generating, pattern recognition, nonlinear recognition, classification, and predition of control and recognition scenarios. Due to the fact that HONNs have been proven to be faster, more accurate, and easier to explain than traditional neural networks, their applications are limitless. Applied Artificial Higher Order Neural Networks for Control and Recognition explores the ways in which higher order neural networks are being integrated specifically for intelligent technology applications. Emphasizing emerging research, practice, and real-world implementation, this timely reference publication is an essential reference source for researchers, IT professionals, and graduate-level computer science and engineering students.
This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results.
As technology continues to become more sophisticated, mimicking natural processes and phenomena also becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for man-made computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications takes an interdisciplinary approach to the topic of natural computing, including emerging technologies being developed for the purpose of simulating natural phenomena, applications across industries, and the future outlook of biologically and nature-inspired technologies. Emphasizing critical research in a comprehensive multi-volume set, this publication is designed for use by IT professionals, researchers, and graduate students studying intelligent computing.
The third volume in the Integrated Vehicle Health Management (IVHM) series focuses on the technology that actually supports the implementation of IVHM in real-life situations. Edited by Ian K. Jennions, Director of the IVHM Center at Cranfield University, UK, this book was written collaboratively by twenty-seven authors from industry, academia and governmental research agencies. Topics include: -Sensors, instrumentation and signal processing -Fault detection and diagnostics -Prognostics and metrics -Architecture -Data Management -Vehicle level reasoning systems -System's design -Applications and disruptive technologies Integrated Vehicle Heath Management: The Technology follows two bestsellers, also published by SAE International, which cover the fundamentals aspects of this new body of knowledge (Integrated Vehicle Health Management: Perspectives on an Emerging Field), and the business justification needed so that investments in the technology make sense (Integrated Vehicle Health Management: Business Case Theory and Practice).
A synergistic approach to signal integrity for high-speed digital design This book is designed to provide contemporary readers with an understanding of the emerging high-speed signal integrity issues that are creating roadblocks in digital design. Written by the foremost experts on the subject, it leverages concepts and techniques from non-related fields such as applied physics and microwave engineering and applies them to high-speed digital design—creating the optimal combination between theory and practical applications. Following an introduction to the importance of signal integrity, chapter coverage includes: Electromagnetic fundamentals for signal integrity Transmission line fundamentals Crosstalk Non-ideal conductor models, including surface roughness and frequency-dependent inductance Frequency-dependent properties of dielectrics Differential signaling Mathematical requirements of physical channels S-parameters for digital engineers Non-ideal return paths and via resonance I/O circuits and models Equalization Modeling and budgeting of timing jitter and noise System analysis using response surface modeling Each chapter includes many figures and numerous examples to help readers relate the concepts to everyday design and concludes with problems for readers to test their understanding of the material. Advanced Signal Integrity for High-Speed Digital Designs is suitable as a textbook for graduate-level courses on signal integrity, for programs taught in industry for professional engineers, and as a reference for the high-speed digital designer.
Get started in the rapidly expanding field of computer vision with this practical guide. Written by Adrian Kaehler and Gary Bradski, creator of the open source OpenCV library, this book provides a thorough introduction for developers, academics, roboticists, and hobbyists. You’ll learn what it takes to build applications that enable computers to "see" and make decisions based on that data. With over 500 functions that span many areas in vision, OpenCV is used for commercial applications such as security, medical imaging, pattern and face recognition, robotics, and factory product inspection. This book gives you a firm grounding in computer vision and OpenCV for building simple or sophisticated vision applications. Hands-on exercises in each chapter help you apply what you’ve learned. This volume covers the entire library, in its modern C++ implementation, including machine learning tools for computer vision. Learn OpenCV data types, array types, and array operations Capture and store still and video images with HighGUI Transform images to stretch, shrink, warp, remap, and repair Explore pattern recognition, including face detection Track objects and motion through the visual field Reconstruct 3D images from stereo vision Discover basic and advanced machine learning techniques in OpenCV
Covering the latest cutting-edge techniques in biomedical signal processing while presenting a coherent treatment of various signal processing methods and applications, this second edition of Practical Biomedical Signal Analysis Using MATLAB® also offers practical guidance on which procedures are appropriate for a given task and different types of data. It begins by describing signal analysis techniques—including the newest and most advanced methods in the field—in an easy and accessible way, illustrating them with Live Script demos. MATLAB® routines are listed when available, and freely available software is discussed where appropriate. The book concludes by exploring the applications of the methods to a broad range of biomedical signals while highlighting common problems encountered in practice. These chapters have been updated throughout and include new sections on multiple channel analysis and connectivity measures, phase-amplitude analysis, functional near-infrared spectroscopy, fMRI (BOLD) signals, wearable devices, multimodal signal analysis, and brain-computer interfaces. By providing a unified overview of the field, this book explains how to integrate signal processing techniques in biomedical applications properly and explores how to avoid misinterpretations and pitfalls. It helps readers to choose the appropriate method as well as design their own methods. It will be an excellent guide for graduate students studying biomedical engineering and practicing researchers in the field of biomedical signal analysis. Features: Fully updated throughout with new achievements, technologies, and methods and is supported with over 40 original MATLAB Live Scripts illustrating the discussed techniques, suitable for self-learning or as a supplement to college courses Provides a practical comparison of the advantages and disadvantages of different approaches in the context of various applications Applies the methods to a variety of signals, including electric, magnetic, acoustic, and optical Katarzyna J. Blinowska is a Professor emeritus at the University of Warsaw, Poland, where she was director of Graduate Studies in Biomedical Physics and head of the Department of Biomedical Physics. Currently, she is employed at the Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. She has been at the forefront in developing new advanced time-series methods for research and clinical applications. Jarosław Żygierewicz is a Professor at the University of Warsaw, Poland. His research focuses on developing methods for analyzing EEG and MEG signals, brain-computer interfaces, and applications of machine learning in signal processing and classification.