The ALENEX workshop provides a forum for the presentation of original research in the implementation and experimental evaluation of algorithms and data structures. This volume collects extended versions of the 12 papers that were selected for presentation.
The annual Workshop on Algorithm Engineering and Experiments (ALENEX) provides a forum for the presentation of original research in all aspects of algorithm engineering, including the implementation and experimental evaluation of algorithms and data structures. The workshop was sponsored by SIAM, the Society for Industrial and Applied Mathematics, and SIGACT, the ACM Special Interest Group on Algorithms and Computation Theory. The aim of ANALCO is to provide a forum for the presentation of original research in the analysis of algorithms and associated combinatorial structures.
The Fifth SIAM International Conference on Data Mining continues the tradition of providing an open forum for the presentation and discussion of innovative algorithms as well as novel applications of data mining. Advances in information technology and data collection methods have led to the availability of large data sets in commercial enterprises and in a wide variety of scientific and engineering disciplines. The field of data mining draws upon extensive work in areas such as statistics, machine learning, pattern recognition, databases, and high performance computing to discover interesting and previously unknown information in data. This conference results in data mining, including applications, algorithms, software, and systems.
The Fourth SIAM International Conference on Data Mining continues the tradition of providing an open forum for the presentation and discussion of innovative algorithms as well as novel applications of data mining. This is reflected in the talks by the four keynote speakers who discuss data usability issues in systems for data mining in science and engineering, issues raised by new technologies that generate biological data, ways to find complex structured patterns in linked data, and advances in Bayesian inference techniques. This proceedings includes 61 research papers.
The Sixth SIAM International Conference on Data Mining continues the tradition of presenting approaches, tools, and systems for data mining in fields such as science, engineering, industrial processes, healthcare, and medicine. The datasets in these fields are large, complex, and often noisy. Extracting knowledge requires the use of sophisticated, high-performance, and principled analysis techniques and algorithms, based on sound statistical foundations. These techniques in turn require powerful visualization technologies; implementations that must be carefully tuned for performance; software systems that are usable by scientists, engineers, and physicians as well as researchers; and infrastructures that support them.
The third SIAM International Conference on Data Mining provided an open forum for the presentation, discussion and development of innovative algorithms, software and theories for data mining applications and data intensive computation. This volume includes 21 research papers.
This book contains selected papers from the symposium "Operations Research 2010" which was held from September 1-3, 2010 at the "Universität der Bundeswehr München", Germany. The international conference, which also serves as the annual meeting of the German Operations Research Society (GOR), attracted more than 600 participants from more than thirty countries. The general theme "Mastering Complexity" focusses on a natural component of the globalization process. Financial markets, traffic systems, network topologies and, last but not least, energy resource management, all contain complex behaviour and economic interdependencies which necessitate a scientific solution. Operations Research is one of the key instruments to model, simulate and analyze such systems. In the process of developing optimal solutions, suitable heuristics and efficient procedures are some of the challenges which are discussed in this volume.
The Seventh SIAM International Conference on Data Mining (SDM 2007) continues a series of conferences whose focus is the theory and application of data mining to complex datasets in science, engineering, biomedicine, and the social sciences. These datasets challenge our abilities to analyze them because they are large and often noisy. Sophisticated, highperformance, and principled analysis techniques and algorithms, based on sound statistical foundations, are required. Visualization is often critically important; tuning for performance is a significant challenge; and the appropriate levels of abstraction to allow end-users to exploit sophisticated techniques and understand clearly both the constraints and interpretation of results are still something of an open question.