The scope of the book is to give an overview of the history of astroparticle physics, starting with the discovery of cosmic rays (Victor Hess, 1912) and its background (X-ray, radioactivity). The book focusses on the ways in which physics changes in the course of this history. The following changes run parallel, overlap, and/or interact: - Discovery of effects like X-rays, radioactivity, cosmic rays, new particles but also progress through non-discoveries (monopoles) etc. - The change of the description of nature in physics, as consequence of new theoretical questions at the beginning of the 20th century, giving rise to quantum physics, relativity, etc. - The change of experimental methods, cooperations, disciplinary divisions. With regard to the latter change, a main topic of the book is to make the specific multi-diciplinary features of astroparticle physics clear.
This symposium was organized at the B.M. Birla Science Centre, Hyderabad, India, and provided a platform for frontier physicists to exchange ideas and review the latest work and developments on a variety of interrelated topics. A feature of the symposium, as well as the proceedings, is the B.M. Birla Memorial Lecture by Nobel Laureate Professor Gerard 't Hooft. There were participants from the USA, several European countries, Russia and CIS countries, South Africa, Japan, India and elsewhere, of whom some forty scientists presented papers. Spanning a wide range of contemporary issues in fundamental physics from string theory to cosmology, the proceedings present many of these talks and contributions.
All papers were peer reviewed. The Conference on Nuclei at the Limits covered most of the current experimental and theoretical research in the structure of nuclei. The emphasis was on: nuclei at the limits of their existence in spin, excitation energy, charge and proton-number; neutron-rich nuclei; and the implications of nuclear structure for astrophysics.
Einstein's energy-momentum relation is applicable to particles of all speeds, including the particle at rest and the massless particle moving with the speed of light. If one formula or formalism is applicable to all speeds, we say it is 'Lorentz-covariant.' As for the internal space-time symmetries, there does not appear to be a clear way to approach this problem. For a particle at rest, there are three spin degrees of freedom. For a massless particle, there are helicity and gauge degrees of freedom. The aim of this book is to present one Lorentz-covariant picture of these two different space-time symmetries. Using the same mathematical tool, it is possible to give a Lorentz-covariant picture of Gell-Mann's quark model for the proton at rest and Feynman's parton model for the fast-moving proton. The mathematical formalism for these aspects of the Lorentz covariance is based on two-by-two matrices and harmonic oscillators which serve as two basic scientific languages for many different branches of physics. It is pointed out that the formalism presented in this book is applicable to various aspects of optical sciences of current interest.
The study of sliding friction is one of the oldest problems in physics, and certainly one of the most important from a practical point of view. Low-friction surfaces are in increasingly high demand for high-tech components such as computer storage systems, miniature motors, and aerospace devices. It has been estimated that about 5% of the gross national product in the developed countries is "wasted" on friction and the related wear. In spite of this, remarkable little is understood about the fundamental, microscopic processes responsible for friction and wear. The topic of interfacial sliding has experienced a major burst of in terest and activity since 1987, much of which has developed quite independently and spontaneously. This volume contains contributions from leading scientists on fundamental aspects of sliding friction. Some problems considered are: What is the origin of stick-and-slip motion? What is the origin of the rapid processes taking place within a lub at low sliding velocities? On a metallic surface, is the rication layer electronic or phononic friction the dominating energy dissipation pro cess? What is the role (if any) of self-organized criticality in sliding friction? How thick is the water layer during sliding on ice and snow? These and other questions raised in this book are of course only part ly answered: the topic of sliding friction is still in an early state of development.
This volume contains the written versions of invited lectures presented at the 29th "Internationale Universitatswochen fiir Kernphysik" in Schladming, Aus tria, in March 1990. The generous support of our sponsors, the Austrian Ministry of Science and Research, the Government of Styria, and others, made it possible to invite expert lecturers. In choosing the topics of the course we have tried to select some of the currently most fiercely debated aspects of quantum field theory. It is a pleasure for us to thank all the speakers for their excellent presentations and their efforts in preparing the lecture notes. After the school the lecture notes were revised by the authors and partly rewritten ~n '!EX. We are also indebted to Mrs. Neuhold for the careful typing of those notes which we did not receive in '!EX. Graz, Austria H. Mitter July 1990 W. Schweiger Contents An Introduction to Integrable Models and Conformal Field Theory By H. Grosse (With 6 Figures) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 1. Introduction ............................................. . 1 1.1 Continuous Integrable Models .......................... . 1 1.2 "Solvable" Models of Statistical Physics ................. . 2 1.3 The Yang-Baxter Relation ............................. . 3 1.4 Braids and I(nots .................................... . 3 1.5 Confonnal Field Theory d = 2 ......................... . 3 2. Integrable Continuum Models - The Inverse Scattering Method - Solitons .................... . 4 2.1 A General Scheme for Solving (Linear) Problems ......... . 4 2.2 The Direct Step ...................................... . 6 2.3 The Inverse Step ..................................... .
Inner Space/Outer Space brings together much of the exciting work contributing to a new synthesis of modern physics. Particle physicists, concerned with the "inner space" of the atom, are making discoveries that their colleagues in astrophysics, studying outer space, can use to develop and test hypotheses about the events that occurred in the microseconds after the Big Bang and that shaped the universe as we know it today. The papers collected here, from scores of scientists, constitute the proceedings of the first major international conference on research at the interface of particle physics and astrophysics, held in May 1984. The editors have written introductions to each major section that draw out the central themes and elaborate on the primary implications of the papers that follow.