Medical Isotope Production Without Highly Enriched Uranium

Medical Isotope Production Without Highly Enriched Uranium

Author: National Research Council

Publisher: National Academies Press

Published: 2009-05-27

Total Pages: 221

ISBN-13: 0309141095

DOWNLOAD EBOOK

This book is the product of a congressionally mandated study to examine the feasibility of eliminating the use of highly enriched uranium (HEU2) in reactor fuel, reactor targets, and medical isotope production facilities. The book focuses primarily on the use of HEU for the production of the medical isotope molybdenum-99 (Mo-99), whose decay product, technetium-99m3 (Tc-99m), is used in the majority of medical diagnostic imaging procedures in the United States, and secondarily on the use of HEU for research and test reactor fuel. The supply of Mo-99 in the U.S. is likely to be unreliable until newer production sources come online. The reliability of the current supply system is an important medical isotope concern; this book concludes that achieving a cost difference of less than 10 percent in facilities that will need to convert from HEU- to LEU-based Mo-99 production is much less important than is reliability of supply.


Decommissioning Techniques for Research Reactors

Decommissioning Techniques for Research Reactors

Author: International Atomic Energy Agency

Publisher:

Published: 1994

Total Pages: 124

ISBN-13:

DOWNLOAD EBOOK

This is the first report published by the IAEA which provides guidance on the preparation and implementation of the decommissioning of different types of research reactor. Different construction and operational features of research reactors have a major impact on the decommissioning techniques required. This report offers information on the conclusions drawn from a number of completed projects and identifies their similarities and differences. It is complemented by a computerized research reactor databank. Staff requirements, decommissioning costs waste activity are presented graphically according to reactor thermal power and integrated energy.


Environmental Consequences of the Chernobyl Accident and Their Remediation

Environmental Consequences of the Chernobyl Accident and Their Remediation

Author: International Atomic Energy Agency

Publisher: IAEA

Published: 2006

Total Pages: 166

ISBN-13: 9789201147059

DOWNLOAD EBOOK

The explosion on 26 April 1986 at the Chernobyl nuclear power plant and the consequent reactor fire resulted in an unprecedented release of radioactive material from a nuclear reactor and adverse consequences for the public and the environment. Although the accident occurred nearly two decades ago, controversy still surrounds the real impact of the disaster. Therefore the IAEA, in cooperation with other UN bodies, the World Bank, as well as the competent authorities of Belarus, the Russian Federation and Ukraine, established the Chernobyl Forum in 2003. The mission of the Forum was to generate 'authoritative consensual statements' on the environmental consequences and health effects attributable to radiation exposure arising from the accident as well as to provide advice on environmental remediation and special health care programmes, and to suggest areas in which further research is required. This report presents the findings and recommendations of the Chernobyl Forum concerning the environmental effects of the Chernobyl accident.


NAA-SR.

NAA-SR.

Author: U.S. Atomic Energy Commission

Publisher:

Published: 1958

Total Pages: 216

ISBN-13:

DOWNLOAD EBOOK


Method for Developing Arrangements for Response to a Nuclear Or Radiological Emergency

Method for Developing Arrangements for Response to a Nuclear Or Radiological Emergency

Author: International Atomic Energy Agency. Radiation Safety Section

Publisher: IAEA

Published: 2003

Total Pages: 288

ISBN-13:

DOWNLOAD EBOOK

This publication provides a practical resource for emergency planning, and fulfils, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency. If used effectively, it will help users to develop a capability to adequately respond to a nuclear or radiological emergency.