Advanced Battery Technologies

Advanced Battery Technologies

Author: Manuela González

Publisher: MDPI

Published: 2021-08-31

Total Pages: 190

ISBN-13: 3036509224

DOWNLOAD EBOOK

In recent years, lithium-ion batteries (LIBs) have been increasingly contributing to the development of novel engineering systems with energy storage requirements. LIBs are playing an essential role in our society, as they are being used in a wide variety of applications, ranging from consumer electronics, electric mobility, renewable energy storage, biomedical applications, or aerospace systems. Despite the remarkable achievements and applicability of LIBs, there are several features within this technology that require further research and improvements. In this book, a collection of 10 original research papers addresses some of those key features, including: battery testing methodologies, state of charge and state of health monitoring, and system-level power electronics applications. One key aspect to emphasize when it comes to this book is the multidisciplinary nature of the selected papers. The presented research was developed at university departments, institutes and organizations of different disciplines, including Electrical Engineering, Control Engineering, Computer Science or Material Science, to name a few examples. The overall result is a book that represents a coherent collection of multidisciplinary works within the prominent field of LIBs.


Proceedings of 21st International Conference on Advanced Materials & Nanotechnology 2018

Proceedings of 21st International Conference on Advanced Materials & Nanotechnology 2018

Author: ConferenceSeries

Publisher: ConferenceSeries

Published: 2018-08-29

Total Pages: 150

ISBN-13:

DOWNLOAD EBOOK

September 04-06, 2018 Zurich, Switzerland Key Topics: Advanced Functional Materials, Advanced Optical Materials, Advanced Bio-Materials & Bio-devices, Polymers Science and Engineering, Emerging Areas of Materials Science, Advanced Ceramics and Composite Materials, Advancement in Nanomaterials Science and Nanotechnology, Carbon Based Materials, Materials Science and Engineering, Metals & Metallurgy, Entrepreneurs Investment Meet, Energy Materials and Harvesting, Advanced Computational Materials, Constructional and Engineering Materials, Environmental and Green Materials, Structural Materials, Biosensor and Bio-electronic Materials, Materials Physics, Materials Chemistry, Advanced Materials Engineering, Coatings and Surface Engineering,


Advances in Battery Technologies for Electric Vehicles

Advances in Battery Technologies for Electric Vehicles

Author: Bruno Scrosati

Publisher: Woodhead Publishing

Published: 2015-05-25

Total Pages: 547

ISBN-13: 1782423982

DOWNLOAD EBOOK

Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries. - Provides an in-depth look into new research on the development of more efficient, long distance travel batteries - Contains an introductory section on the market for battery and hybrid electric vehicles - Discusses battery pack design and management and the issues involved with end-of-life management for these types of batteries


Valve-Regulated Lead-Acid Batteries

Valve-Regulated Lead-Acid Batteries

Author: Patrick T. Moseley

Publisher: Elsevier

Published: 2004-02-24

Total Pages: 603

ISBN-13: 008047473X

DOWNLOAD EBOOK

For many decades, the lead-acid battery has been the most widely used energy-storage device for medium- and large-scale applications (approximately 100Wh and above). In recent years, the traditional, flooded design of the battery has begun to be replaced by an alternative design. This version - the valve-regulated lead-acid (VRLA) battery - requires no replenishment of the water content of the electrolyte solution, does not spill liquids, and can be used in any desired orientation. Since the VRLA battery operates in a somewhat different manner from its flooded counterpart, considerable technological development has been necessary to meet the exacting performance requirements of the full range of applications in which rechargeable batteries are used. The valve-regulated design is now well established in the industrial battery sector, and also appears set to be adopted widely for automotive duty. This book provides a comprehensive account of VRLA technology and its uses. In the future, all industrial processes - including the manufacture of batteries - will be required to conform to the conventions of sustainability. Accordingly, the crucial areas of the environmental impact associated with the production and use of VRLA batteries and the recycling of spent units are also treated thoroughly. Valve-Regulated Lead-Acid Batteries gives an essential insight into the science that underlies the development and operation of VRLA batteries and is a comprehensive reference source for those involved in the practical use of the technology in key energy-storage applications. - Covers all major advances in the field - Provides a comprehensive account of VRLA technology and its uses - First book dedicated to this technology


Effectiveness of the United States Advanced Battery Consortium as a Government-Industry Partnership

Effectiveness of the United States Advanced Battery Consortium as a Government-Industry Partnership

Author: National Research Council

Publisher: National Academies Press

Published: 1998-08-14

Total Pages: 90

ISBN-13: 0309173876

DOWNLOAD EBOOK

This study by the National Research Council (NRC) was requested by DOE's Office of Advanced Automotive Technologies. The study focuses on the processes used by the USABC to select, evaluate, and manage R&D projects on EV batteries in Phases I and II of the program.


Electrochemical Systems

Electrochemical Systems

Author: John Newman

Publisher: John Wiley & Sons

Published: 2021-01-07

Total Pages: 608

ISBN-13: 1119514606

DOWNLOAD EBOOK

Provides a comprehensive understanding of a wide range of systems and topics in electrochemistry This book offers complete coverage of electrochemical theories as they pertain to the understanding of electrochemical systems. It describes the foundations of thermodynamics, chemical kinetics, and transport phenomena—including the electrical potential and charged species. It also shows how to apply electrochemical principles to systems analysis and mathematical modeling. Using these tools, the reader will be able to model mathematically any system of interest and realize quantitative descriptions of the processes involved. This brand new edition of Electrochemical Systems updates all chapters while adding content on lithium battery electrolyte characterization and polymer electrolytes. It also includes a new chapter on impedance spectroscopy. Presented in 4 sections, the book covers: Thermodynamics of Electrochemical Cells, Electrode Kinetics and Other Interfacial Phenomena, Transport Processes in Electrolytic Solutions, and Current Distribution and Mass Transfer in Electrochemical Systems. It also features three appendixes containing information on: Partial Molar Volumes, Vectors and Tensors, and Numerical Solution of Coupled, Ordinary Differential Equations. Details fundamental knowledge with a thorough methodology Thoroughly updated throughout with new material on topics including lithium battery electrolyte characterization, impedance analysis, and polymer electrolytes Includes a discussion of equilibration of a charged polymer material and an electrolytic solution (the Donnan equilibrium) A peerless classic on electrochemical engineering Electrochemical Systems, Fourth Edition is an excellent resource for students, scientists, and researchers involved in electrochemical engineering.