Proceedings: Creep & Fracture in High Temperature Components

Proceedings: Creep & Fracture in High Temperature Components

Author: I. A. Shibli

Publisher: DEStech Publications, Inc

Published: 2009

Total Pages: 661

ISBN-13: 160595005X

DOWNLOAD EBOOK

A compendium of European and worldwide research investigating creep, fatigue and failure behaviors in metals under high-temperature and other service stresses. It helps set the standards for coordinating creep data and for maintaining defect-free quality in high-temperature metals and metal-based weldments.


Creep and Fracture in High Temperature Components

Creep and Fracture in High Temperature Components

Author: European Creep Collaborative Committee

Publisher: DEStech Publications, Inc

Published: 2005

Total Pages: 1136

ISBN-13: 9781932078497

DOWNLOAD EBOOK

Provides information from around the world on creep in multiple high-temperature metals, alloys, and advanced materials.


Fundamentals of Creep in Metals and Alloys

Fundamentals of Creep in Metals and Alloys

Author: Michael E. Kassner

Publisher: Elsevier

Published: 2004-04-06

Total Pages: 289

ISBN-13: 0080532144

DOWNLOAD EBOOK

* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world's leading investigators.· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion


Creep and High Temperature Deformation of Metals and Alloys

Creep and High Temperature Deformation of Metals and Alloys

Author: Stefano Spigarelli

Publisher: MDPI

Published: 2019-12-12

Total Pages: 212

ISBN-13: 3039218786

DOWNLOAD EBOOK

By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated. This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.


Proceedings of the 2014 Energy Materials Conference

Proceedings of the 2014 Energy Materials Conference

Author: The Minerals, Metals & Materials Society (TMS)

Publisher: John Wiley & Sons

Published: 2015-04-06

Total Pages: 1073

ISBN-13: 1119027993

DOWNLOAD EBOOK

This DVD contains a collection of papers presented at EnergyMaterials 2014, a conference organized jointly by The ChineseSociety for Metals (CSM) and The Minerals, Metals & MaterialsSociety (TMS), and held November 4-6, 2014, in Xi’an, ShaanxiProvince, China. With the rapid growth of the world’s energyproduction and consumption, the important role of energy materialshas achieved worldwide acknowledgement. Material producers andconsumers constantly seek the possibility of increasing strength,improving fabrication and service performance, simplifyingprocesses, and reducing costs. Energy Materials 2014 has provided aforum for academics, researchers, and engineers around the world toexchange state-of-the-art development and information on issuesrelated to energy materials. The papers on the DVD are organized around the followingtopics: Materials for Coal-Based Systems Materials for Gas Turbine Systems Materials for Nuclear Systems Materials for Oil and Gas Materials for Pressure Vessels


Creep-Resistant Steels

Creep-Resistant Steels

Author: Fujio Abe

Publisher: Elsevier

Published: 2008-03-14

Total Pages: 701

ISBN-13: 1845694015

DOWNLOAD EBOOK

Creep-resistant steels are widely used in the petroleum, chemical and power generation industries. Creep-resistant steels must be reliable over very long periods of time at high temperatures and in severe environments. Understanding and improving long-term creep strength is essential for safe operation of plant and equipment. This book provides an authoritative summary of key research in this important area.The first part of the book describes the specifications and manufacture of creep-resistant steels. Part two covers the behaviour of creep-resistant steels and methods for strengthening them. The final group of chapters analyses applications in such areas as turbines and nuclear reactors.With its distinguished editors and international team of contributors, Creep-resistant steels is a valuable reference for the power generation, petrochemical and other industries which use high strength steels at elevated temperatures. - Describes the specifications and manufacture of creep-resistant steels - Strengthening methods are discussed in detail - Different applications are analysed including turbines and nuclear reactors


Creep and Fatigue in Polymer Matrix Composites

Creep and Fatigue in Polymer Matrix Composites

Author: Rui Miranda Guedes

Publisher: Woodhead Publishing

Published: 2019-03-14

Total Pages: 590

ISBN-13: 0081026021

DOWNLOAD EBOOK

Creep and Fatigue in Polymer Matrix Composites, Second Edition, updates the latest research in modeling and predicting creep and fatigue in polymer matrix composites. The first part of the book reviews the modeling of viscoelastic and viscoplastic behavior as a way of predicting performance and service life. Final sections discuss techniques for modeling creep rupture and failure and how to test and predict long-term creep and fatigue in polymer matrix composites. - Reviews the latest research in modeling and predicting creep and fatigue in polymer matrix composites - Puts a specific focus on viscoelastic and viscoplastic modeling - Features the time-temperature-age superposition principle for predicting long-term response - Examines the creep rupture and damage interaction, with a particular focus on time-dependent failure criteria for the lifetime prediction of polymer matrix composite structures that are illustrated using experimental cases