Problems of Deformation and Fracture in Materials and Structures

Problems of Deformation and Fracture in Materials and Structures

Author: V.P. Matveenko

Publisher: Trans Tech Publications Ltd

Published: 2015-10-28

Total Pages: 190

ISBN-13: 3035700672

DOWNLOAD EBOOK

The papers are devoted to estimation of salt rocks’ long-term strength in natural conditions, mathematical modeling of underworked rock strata failure process, analysis of thermal conditions within the flow conduits of MHD-devices.


Deformation and Fracture Mechanics of Engineering Materials

Deformation and Fracture Mechanics of Engineering Materials

Author: Richard W. Hertzberg

Publisher:

Published: 1989-01-17

Total Pages: 714

ISBN-13:

DOWNLOAD EBOOK

This Third Edition of the well-received engineering materials book has been completely updated, and now contains over 1,100 citations. Thorough enough to serve as a text, and up-to-date enough to serve as a reference. There is a new chapter on strengthening mechanisms in metals, new sections on composites and on superlattice dislocations, expanded treatment of cast and powder-produced conventional alloys, plastics, quantitative fractography, JIC and KIEAC test procedures, fatigue, and failure analysis. Includes examples and case histories.


Multiscale Deformation and Fracture in Materials and Structures

Multiscale Deformation and Fracture in Materials and Structures

Author: T-J. Chuang

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 451

ISBN-13: 0306469529

DOWNLOAD EBOOK

Modern Solid Mechanics considers phenomena at many levels, ranging from nano size at atomic scale through the continuum level at millimeter size to large structures at the tens of meter scale. The deformation and fracture behavior at these various scales are inextricably related to interdisciplinary methods derived from applied mathematics, physics, chemistry, and engineering mechanics. This book, in honor of James R. Rice, contains articles from his colleagues and former students that bring these sophisticated methods to bear on a wide range of problems. Articles discussing problems of deformation include topics of dislocation mechanics, second particle effects, plastic yield criterion on porous materials, hydrogen embrittlement, solid state sintering, nanophases at surfaces, adhesion and contact mechanics, diffuse instability in geomaterials, and percolation in metal deformation. In the fracture area, the topics include: elastic-plastic crack growth, dynamic fracture, stress intensity and J-integral analysis, stress-corrosion cracking, and fracture in single crystal, piezoelectric, composite and cementitious materials. The book will be a valuable resource for researchers in modern solid mechanics and can be used as reference or supplementary text in mechanical and civil engineering, applied mechanics, materials science, and engineering graduate courses on fracture mechanics, elasticity, plasticity, mechanics of materials or the application of solid mechanics to processing, and reliability of life predictions.


Deformation and Fracture Mechanics of Engineering Materials

Deformation and Fracture Mechanics of Engineering Materials

Author: Richard W. Hertzberg

Publisher:

Published: 1996

Total Pages: 824

ISBN-13:

DOWNLOAD EBOOK

This edition comprehensively updates the field of fracture mechanics by including details of the latest research programmes. It contains new material on non-metals, design issues and statistical aspects. The application of fracture mechanics to different types of materials is stressed.


Fracture of Engineering Materials and Structures

Fracture of Engineering Materials and Structures

Author: S.H. Teoh

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 930

ISBN-13: 9401136505

DOWNLOAD EBOOK

Recent advances in the field of fracture of engineering materials and structures have increasingly indicated its multidisciplinary nature. This area of research now involves scientists and engineers who work in materials science, applied mathematics and mechanics, and also computer scientists. The present volume, which contains the Proceedings of the Joint FEFG/lCF International Conference on Fracture of Engineering Materials and Structures held in Singapore from the 6th to 8th of August 1991, is a testimony of this multidisciplinary nature. This International Conference was the Second Symposium of the Far East Fracture Group (FEFG) and thus provided a unique opportunity for researchers and engineers in the Far East region to exchange and acquire knowledge of new advances and applications in fracture. The Conference was also the Inter-Quadrennial International Conference on Fracture (ICF) for 1991 and thus appealed to researchers in the international arena who wished to take advantage of this meeting to present their findings. The Conference has brought together over 130 participants from more than 24 countries, and they represented government and industrial research laboratories as well as academic institutions. It has thus achieved its objective of bringing together scientists and engineers with different backgrounds and perspectives but with . a common interest in new developments in the fracture of engineering materials and structures. This volume contains 4 keynote papers, 4 invited papers and 130 contributed papers.


Mechanisms of Deformation and Fracture

Mechanisms of Deformation and Fracture

Author: K. E. Easterling

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 431

ISBN-13: 1483159000

DOWNLOAD EBOOK

Mechanisms of Deformation and Fracture contains the proceedings of the Interdisciplinary Conference on the Mechanisms of Deformation and Fracture held at the University of Luleå in Sweden on September 20-22, 1978. The papers explore the mechanisms underlying deformation and fracture of materials such as pearlite, metals, quartz, soils, and rocks. Results of theoretical and experimental studies on topics ranging from electromagnetic detection of low-cycle fatigue to stress and strain distribution in two-phase systems are presented. This book is comprised of 37 chapters and begins with a discussion on the interrelationships among solid mechanics, earth sciences, and material sciences. Subsequent chapters focus on the low-cycle behavior of case hardened steel; deformation and shear of normally consolidated flocculated kaolin; analytical modeling in inelasticity; creep mechanisms in clay; and initiation of crack growth at full plasticity. Plastic flow mechanisms and the rheological properties of the Earth's mantle are also examined, along with the fracture of glassy thermoplastics. The final chapter presents a thermodynamic model of consolidation in cohesive soils. This monograph will be a valuable resource for students and practitioners of mechanical engineering, metallurgy, materials science, and earth sciences.


Deformation and Fracture Mechanics of Engineering Materials

Deformation and Fracture Mechanics of Engineering Materials

Author: Richard W. Hertzberg

Publisher: Wiley Global Education

Published: 2012-08-07

Total Pages: 785

ISBN-13: 1118213394

DOWNLOAD EBOOK

Deformation and Fracture Mechanics of Engineering Materials provides a combined fracture mechanics-materials approach to the fracture of engineering solids with comprehensive treatment and detailed explanations and references, making it the perfect resource for senior and graduate engineering students, and practicing engineers alike. The 5th edition includes new end-of-chapter homework problems, examples, illustrations, and a new chapter on products liability and recall addressing the associated social consequences of product failure. The new edition continues to discuss actual failure case histories, and includes new discussion of the fracture behavior and fractography of ceramics, glasses, and composite materials, and a section on natural materials including bone and sea shells. New co-authors Richard P. Vinci and Jason L. Hertzberg add their talent and expertise to broaden the book's perspective, while maintaining a balance between the continuum mechanics understanding of the failure of solids and the roles of the material's nano- and microstructure as they influence the mechanical properties of materials.


Fatigue of Structures and Materials

Fatigue of Structures and Materials

Author: J. Schijve

Publisher: Springer Science & Business Media

Published: 2008-12-16

Total Pages: 627

ISBN-13: 1402068085

DOWNLOAD EBOOK

Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.


Problems of Fracture Mechanics and Fatigue

Problems of Fracture Mechanics and Fatigue

Author: E.E. Gdoutos

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 573

ISBN-13: 9401727740

DOWNLOAD EBOOK

On Fracture Mechanics A major objective of engineering design is the determination of the geometry and dimensions of machine or structural elements and the selection of material in such a way that the elements perform their operating function in an efficient, safe and economic manner. For this reason the results of stress analysis are coupled with an appropriate failure criterion. Traditional failure criteria based on maximum stress, strain or energy density cannot adequately explain many structural failures that occurred at stress levels considerably lower than the ultimate strength of the material. On the other hand, experiments performed by Griffith in 1921 on glass fibers led to the conclusion that the strength of real materials is much smaller, typically by two orders of magnitude, than the theoretical strength. The discipline of fracture mechanics has been created in an effort to explain these phenomena. It is based on the realistic assumption that all materials contain crack-like defects from which failure initiates. Defects can exist in a material due to its composition, as second-phase particles, debonds in composites, etc. , they can be introduced into a structure during fabrication, as welds, or can be created during the service life of a component like fatigue, environment-assisted or creep cracks. Fracture mechanics studies the loading-bearing capacity of structures in the presence of initial defects. A dominant crack is usually assumed to exist.


Fracture Mechanics of Metals, Composites, Welds, and Bolted Joints

Fracture Mechanics of Metals, Composites, Welds, and Bolted Joints

Author: Bahram Farahmand

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 425

ISBN-13: 1461515858

DOWNLOAD EBOOK

In the preliminary stage of designing new structural hardware to perform a given mission in a fluctuating load environment, there are several factors that the designer should consider. Trade studies for different design configurations should be performed and, based on strength and weight considerations, among others, an optimum configuration selected. The selected design must withstand the environment in question without failure. Therefore, a comprehensive structural analysis that consists of static, dynamic, fatigue, and fracture is necessary to ensure the integrity of the structure. Engineers must also consider the feasibility of fabricating the structural hardware in the material selection process. During the past few decades, fracture mechanics has become a necessary discipline for the solution of many structural problems in which the survivability of structure containing pre-existing flaws is of great interest. These problems include structural failures resulting from cracks that are inherent in the material, or defects that are introduced in the part due to improper handling or rough machining, that must be assessed through fracture mechanics concepts.