Problem Book in Quantum Field Theory

Problem Book in Quantum Field Theory

Author: Voja Radovanovic

Publisher: Springer Science & Business Media

Published: 2008-01-24

Total Pages: 242

ISBN-13: 3540770143

DOWNLOAD EBOOK

The Problem Book in Quantum Field Theory contains about 200 problems with solutions or hints that help students to improve their understanding and develop skills necessary for pursuing the subject. It deals with the Klein-Gordon and Dirac equations, classical field theory, canonical quantization of scalar, Dirac and electromagnetic fields, the processes in the lowest order of perturbation theory, renormalization and regularization. The solutions are presented in a systematic and complete manner. The material covered and the level of exposition make the book appropriate for graduate and undergraduate students in physics, as well as for teachers and researchers.


Problems in Quantum Field Theory

Problems in Quantum Field Theory

Author: François Gelis

Publisher: Cambridge University Press

Published: 2021-08-26

Total Pages: 375

ISBN-13: 1108838804

DOWNLOAD EBOOK

A collection of problems in QFT, with complete solutions, for graduate students taking their first or second course.


Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory

Author: Philippe Andre Martin

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 442

ISBN-13: 3662084902

DOWNLOAD EBOOK

Emphasis is placed on analogies between the various systems rather than on advanced or specialized aspects, with the purpose of illustrating common ideas within different domains of physics. Starting from a basic knowledge of quantum mechanics and classical electromagnetism, the exposition is self-contained and explicitly details all steps of the derivations. The new edition features a substantially new treatment of nucleon pairing.


Quantum Field Theory in a Nutshell

Quantum Field Theory in a Nutshell

Author: Anthony Zee

Publisher: Princeton University Press

Published: 2010-02-01

Total Pages: 605

ISBN-13: 1400835321

DOWNLOAD EBOOK

A fully updated edition of the classic text by acclaimed physicist A. Zee Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. This expanded edition features several additional chapters, as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading. The most accessible and comprehensive introductory textbook available Features a fully revised, updated, and expanded text Covers the latest exciting advances in the field Includes new exercises Offers a one-of-a-kind resource for students and researchers Leading universities that have adopted this book include: Arizona State University Boston University Brandeis University Brown University California Institute of Technology Carnegie Mellon College of William & Mary Cornell Harvard University Massachusetts Institute of Technology Northwestern University Ohio State University Princeton University Purdue University - Main Campus Rensselaer Polytechnic Institute Rutgers University - New Brunswick Stanford University University of California - Berkeley University of Central Florida University of Chicago University of Michigan University of Montreal University of Notre Dame Vanderbilt University Virginia Tech University


Problems in Quantum Mechanics

Problems in Quantum Mechanics

Author: I. I. Gol’dman

Publisher: Courier Corporation

Published: 2012-05-09

Total Pages: 292

ISBN-13: 0486173216

DOWNLOAD EBOOK

A comprehensive collection of problems of varying degrees of difficulty in nonrelativistic quantum mechanics, with answers and completely worked-out solutions. An ideal adjunct to any textbook in quantum mechanics.


An Introduction To Quantum Field Theory

An Introduction To Quantum Field Theory

Author: Michael E. Peskin

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 866

ISBN-13: 0429972105

DOWNLOAD EBOOK

An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.


Quantum Field Theory

Quantum Field Theory

Author: Mark Srednicki

Publisher: Cambridge University Press

Published: 2007-01-25

Total Pages: 664

ISBN-13: 1139462768

DOWNLOAD EBOOK

Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.


The Conceptual Framework of Quantum Field Theory

The Conceptual Framework of Quantum Field Theory

Author: Anthony Duncan

Publisher: Oxford University Press

Published: 2012-08-09

Total Pages:

ISBN-13: 0191642207

DOWNLOAD EBOOK

The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quantum-mechanical, relativistic and locality constraints. The central role of symmetries in relativistic quantum field theories is explored in the third section of the book, while in the final section, entitled "Scales", we explore in detail the feature of quantum field theories most critical for their enormous phenomenological success - the scale separation property embodied by the renormalization group properties of a theory defined by an effective local Lagrangian.


Student Friendly Quantum Field Theory

Student Friendly Quantum Field Theory

Author: Robert D. Klauber

Publisher:

Published: 2013

Total Pages: 544

ISBN-13: 9780984513932

DOWNLOAD EBOOK

By incorporating extensive student input and innovative teaching methodologies, this book aims to make the process of learning quantum field theory easier, and thus more rapid, profound, and efficient, for both students and instructors. Comprehensive explanations are favored over conciseness, every step in derivations is included, and big picture overviews are provided throughout. Typical student responses indicate how well the text achieves its aim. [This] book ... makes quantum field theory much easier to understand!" Thanks for making quantum field theory clearer! Awesome. .. approach and presentation .. just awesome !!! Best presentation of QFT I have ever seen . marvelous!!!. " transforms learning QFT from being a hazardous endeavor to actually being an enjoyable thing to do." Great job .. extremely clear guided me through many ambiguities .. I wasn't able to work out with any other book. ..truly special extraordinary text. For me, a big relief .. finding [this] text. The book focuses on the canonical quantization approach, but also provides an introductory chapter on path integrals. It covers fundamental principles of quantum field theory, then develops quantum electrodynamics in depth. See the first few chapters at www.quantumfieldtheory.info.


Quantum Field Theory and the Standard Model

Quantum Field Theory and the Standard Model

Author: Matthew D. Schwartz

Publisher: Cambridge University Press

Published: 2014

Total Pages: 869

ISBN-13: 1107034736

DOWNLOAD EBOOK

A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.