Problems in Analysis

Problems in Analysis

Author: B. Gelbaum

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 232

ISBN-13: 1461576792

DOWNLOAD EBOOK

These problems and solutions are offered to students of mathematics who have learned real analysis, measure theory, elementary topology and some theory of topological vector spaces. The current widely used texts in these subjects provide the background for the understanding of the problems and the finding of their solutions. In the bibliography the reader will find listed a number of books from which the necessary working vocabulary and techniques can be acquired. Thus it is assumed that terms such as topological space, u-ring, metric, measurable, homeomorphism, etc., and groups of symbols such as AnB, x EX, f: IR 3 X 1-+ X 2 - 1, etc., are familiar to the reader. They are used without introductory definition or explanation. Nevertheless, the index provides definitions of some terms and symbols that might prove puzzling. Most terms and symbols peculiar to the book are explained in the various introductory paragraphs titled Conventions. Occasionally definitions and symbols are introduced and explained within statements of problems or solutions. Although some solutions are complete, others are designed to be sketchy and thereby to give their readers an opportunity to exercise their skill and imagination. Numbers written in boldface inside square brackets refer to the bib liography. I should like to thank Professor P. R. Halmos for the opportunity to discuss with him a variety of technical, stylistic, and mathematical questions that arose in the writing of this book. Buffalo, NY B.R.G.


A Problem Book in Real Analysis

A Problem Book in Real Analysis

Author: Asuman G. Aksoy

Publisher: Springer Science & Business Media

Published: 2010-03-10

Total Pages: 257

ISBN-13: 1441912967

DOWNLOAD EBOOK

Education is an admirable thing, but it is well to remember from time to time that nothing worth knowing can be taught. Oscar Wilde, “The Critic as Artist,” 1890. Analysis is a profound subject; it is neither easy to understand nor summarize. However, Real Analysis can be discovered by solving problems. This book aims to give independent students the opportunity to discover Real Analysis by themselves through problem solving. ThedepthandcomplexityofthetheoryofAnalysiscanbeappreciatedbytakingaglimpseatits developmental history. Although Analysis was conceived in the 17th century during the Scienti?c Revolution, it has taken nearly two hundred years to establish its theoretical basis. Kepler, Galileo, Descartes, Fermat, Newton and Leibniz were among those who contributed to its genesis. Deep conceptual changes in Analysis were brought about in the 19th century by Cauchy and Weierstrass. Furthermore, modern concepts such as open and closed sets were introduced in the 1900s. Today nearly every undergraduate mathematics program requires at least one semester of Real Analysis. Often, students consider this course to be the most challenging or even intimidating of all their mathematics major requirements. The primary goal of this book is to alleviate those concerns by systematically solving the problems related to the core concepts of most analysis courses. In doing so, we hope that learning analysis becomes less taxing and thereby more satisfying.


Theorems and Problems in Functional Analysis

Theorems and Problems in Functional Analysis

Author: A. A. Kirillov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 351

ISBN-13: 1461381533

DOWNLOAD EBOOK

Even the simplest mathematical abstraction of the phenomena of reality the real line-can be regarded from different points of view by different mathematical disciplines. For example, the algebraic approach to the study of the real line involves describing its properties as a set to whose elements we can apply" operations," and obtaining an algebraic model of it on the basis of these properties, without regard for the topological properties. On the other hand, we can focus on the topology of the real line and construct a formal model of it by singling out its" continuity" as a basis for the model. Analysis regards the line, and the functions on it, in the unity of the whole system of their algebraic and topological properties, with the fundamental deductions about them obtained by using the interplay between the algebraic and topological structures. The same picture is observed at higher stages of abstraction. Algebra studies linear spaces, groups, rings, modules, and so on. Topology studies structures of a different kind on arbitrary sets, structures that give mathe matical meaning to the concepts of a limit, continuity, a neighborhood, and so on. Functional analysis takes up topological linear spaces, topological groups, normed rings, modules of representations of topological groups in topological linear spaces, and so on. Thus, the basic object of study in functional analysis consists of objects equipped with compatible algebraic and topological structures.


Problems in Real Analysis

Problems in Real Analysis

Author: Teodora-Liliana Radulescu

Publisher: Springer Science & Business Media

Published: 2009-06-12

Total Pages: 462

ISBN-13: 0387773797

DOWNLOAD EBOOK

Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.


Modern Real and Complex Analysis

Modern Real and Complex Analysis

Author: Bernard R. Gelbaum

Publisher: John Wiley & Sons

Published: 2011-02-25

Total Pages: 506

ISBN-13: 111803080X

DOWNLOAD EBOOK

Modern Real and Complex Analysis Thorough, well-written, and encyclopedic in its coverage, this textoffers a lucid presentation of all the topics essential to graduatestudy in analysis. While maintaining the strictest standards ofrigor, Professor Gelbaum's approach is designed to appeal tointuition whenever possible. Modern Real and Complex Analysisprovides up-to-date treatment of such subjects as the Daniellintegration, differentiation, functional analysis and Banachalgebras, conformal mapping and Bergman's kernels, defectivefunctions, Riemann surfaces and uniformization, and the role ofconvexity in analysis. The text supplies an abundance of exercisesand illustrative examples to reinforce learning, and extensivenotes and remarks to help clarify important points.


Mathematical Analysis of Physical Problems

Mathematical Analysis of Physical Problems

Author: Philip Russell Wallace

Publisher:

Published: 1972

Total Pages: 616

ISBN-13: 9780080856261

DOWNLOAD EBOOK

This mathematical reference for theoretical physics employs common techniques and concepts to link classical and modern physics. It provides the necessary mathematics to solve most of the problems. Topics include the vibrating string, linear vector spaces, the potential equation, problems of diffusion and attenuation, probability and stochastic processes, and much more.


Problems and Theorems in Analysis I

Problems and Theorems in Analysis I

Author: George Polya

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 415

ISBN-13: 3642619835

DOWNLOAD EBOOK

From the reviews: "The work is one of the real classics of this century; it has had much influence on teaching, on research in several branches of hard analysis, particularly complex function theory, and it has been an essential indispensable source book for those seriously interested in mathematical problems." Bulletin of the American Mathematical Society


Selected Problems in Real Analysis

Selected Problems in Real Analysis

Author: M. G. Goluzina

Publisher: American Mathematical Soc.

Published:

Total Pages: 386

ISBN-13: 9780821897386

DOWNLOAD EBOOK

This book is intended for students wishing to deepen their knowledge of mathematical analysis and for those teaching courses in this area. It differs from other problem books in the greater difficulty of the problems, some of which are well-known theorems in analysis. Nonetheless, no special preparation is required to solve the majority of the problems. Brief but detailed solutions to most of the problems are given in the second part of the book. This book is unique in that the authors have aimed to systematize a range of problems that are found in sources that are almost inaccessible (especially to students) and in mathematical folklore.