Algorithmic Problem Solving

Algorithmic Problem Solving

Author: Roland Backhouse

Publisher: John Wiley & Sons

Published: 2011-10-24

Total Pages: 434

ISBN-13: 0470684534

DOWNLOAD EBOOK

An entertaining and captivating way to learn the fundamentals of using algorithms to solve problems The algorithmic approach to solving problems in computer technology is an essential tool. With this unique book, algorithm guru Roland Backhouse shares his four decades of experience to teach the fundamental principles of using algorithms to solve problems. Using fun and well-known puzzles to gradually introduce different aspects of algorithms in mathematics and computing. Backhouse presents you with a readable, entertaining, and energetic book that will motivate and challenge you to open your mind to the algorithmic nature of problem solving. Provides a novel approach to the mathematics of problem solving focusing on the algorithmic nature of problem solving Uses popular and entertaining puzzles to teach you different aspects of using algorithms to solve mathematical and computing challenges Features a theory section that supports each of the puzzles presented throughout the book Assumes only an elementary understanding of mathematics Let Roland Backhouse and his four decades of experience show you how you can solve challenging problems with algorithms!


Problem Solving in Algorithms A Research Approach

Problem Solving in Algorithms A Research Approach

Author: Sanpawat Kantabutra

Publisher: ศูนย์บริหารงานวิจัย สำนักงานมหาวิทยาลัยเชียงใหม่

Published: 2021-03-01

Total Pages: 222

ISBN-13: 6163985494

DOWNLOAD EBOOK

This is THE book for every serious researcher in theoretical computer science. The book exposes critical detail in problem solving and researching in the fields of algorithms and complexity that no other book has ever done. It reveals the secrets of doing research and the way of thinking that are so natural to the world’s top computer scientists. Such skills and thinking are so “second nature” to every top computer scientist that they are not even mentioned or talked about. This book is thus for everyone who seriously wants to become an excellent researcher but may not have such skills and thinking.


Introduction to Algorithms, third edition

Introduction to Algorithms, third edition

Author: Thomas H. Cormen

Publisher: MIT Press

Published: 2009-07-31

Total Pages: 1313

ISBN-13: 0262258102

DOWNLOAD EBOOK

The latest edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called “Divide-and-Conquer”), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many exercises and problems have been added for this edition. The international paperback edition is no longer available; the hardcover is available worldwide.


Problem Solving with Algorithms and Data Structures Using Python

Problem Solving with Algorithms and Data Structures Using Python

Author: Bradley N. Miller

Publisher: Franklin Beedle & Associates

Published: 2011

Total Pages: 0

ISBN-13: 9781590282571

DOWNLOAD EBOOK

Thes book has three key features : fundamental data structures and algorithms; algorithm analysis in terms of Big-O running time in introducied early and applied throught; pytohn is used to facilitates the success in using and mastering data strucutes and algorithms.


Algorithms: Design Techniques And Analysis (Second Edition)

Algorithms: Design Techniques And Analysis (Second Edition)

Author: M H Alsuwaiyel

Publisher: World Scientific

Published: 2021-11-08

Total Pages: 756

ISBN-13: 9811238669

DOWNLOAD EBOOK

Problem solving is an essential part of every scientific discipline. It has two components: (1) problem identification and formulation, and (2) the solution to the formulated problem. One can solve a problem on its own using ad hoc techniques or by following techniques that have produced efficient solutions to similar problems. This required the understanding of various algorithm design techniques, how and when to use them to formulate solutions, and the context appropriate for each of them.This book presents a design thinking approach to problem solving in computing — by first using algorithmic analysis to study the specifications of the problem, before mapping the problem on to data structures, then on to the situatable algorithms. Each technique or strategy is covered in its own chapter supported by numerous examples of problems and their algorithms. The new edition includes a comprehensive chapter on parallel algorithms, and many enhancements.


Algorithms, Part II

Algorithms, Part II

Author: Robert Sedgewick

Publisher: Addison-Wesley Professional

Published: 2014-02-01

Total Pages: 973

ISBN-13: 0133847268

DOWNLOAD EBOOK

This book is Part II of the fourth edition of Robert Sedgewick and Kevin Wayne’s Algorithms, the leading textbook on algorithms today, widely used in colleges and universities worldwide. Part II contains Chapters 4 through 6 of the book. The fourth edition of Algorithms surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use. The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts. The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants. Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.


Handbook of Research on Artificial Intelligence Techniques and Algorithms

Handbook of Research on Artificial Intelligence Techniques and Algorithms

Author: Vasant, Pandian

Publisher: IGI Global

Published: 2014-11-30

Total Pages: 913

ISBN-13: 1466672595

DOWNLOAD EBOOK

For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.


The Algorithm Design Manual

The Algorithm Design Manual

Author: Steven S Skiena

Publisher: Springer Science & Business Media

Published: 2009-04-05

Total Pages: 742

ISBN-13: 1848000707

DOWNLOAD EBOOK

This newly expanded and updated second edition of the best-selling classic continues to take the "mystery" out of designing algorithms, and analyzing their efficacy and efficiency. Expanding on the first edition, the book now serves as the primary textbook of choice for algorithm design courses while maintaining its status as the premier practical reference guide to algorithms for programmers, researchers, and students. The reader-friendly Algorithm Design Manual provides straightforward access to combinatorial algorithms technology, stressing design over analysis. The first part, Techniques, provides accessible instruction on methods for designing and analyzing computer algorithms. The second part, Resources, is intended for browsing and reference, and comprises the catalog of algorithmic resources, implementations and an extensive bibliography. NEW to the second edition: • Doubles the tutorial material and exercises over the first edition • Provides full online support for lecturers, and a completely updated and improved website component with lecture slides, audio and video • Contains a unique catalog identifying the 75 algorithmic problems that arise most often in practice, leading the reader down the right path to solve them • Includes several NEW "war stories" relating experiences from real-world applications • Provides up-to-date links leading to the very best algorithm implementations available in C, C++, and Java


Evolutionary Algorithms for Solving Multi-Objective Problems

Evolutionary Algorithms for Solving Multi-Objective Problems

Author: Carlos Coello Coello

Publisher: Springer Science & Business Media

Published: 2007-08-26

Total Pages: 810

ISBN-13: 0387367977

DOWNLOAD EBOOK

This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.


Model-Based Machine Learning

Model-Based Machine Learning

Author: John Winn

Publisher: CRC Press

Published: 2023-11-30

Total Pages: 469

ISBN-13: 1498756824

DOWNLOAD EBOOK

Today, machine learning is being applied to a growing variety of problems in a bewildering variety of domains. A fundamental challenge when using machine learning is connecting the abstract mathematics of a machine learning technique to a concrete, real world problem. This book tackles this challenge through model-based machine learning which focuses on understanding the assumptions encoded in a machine learning system and their corresponding impact on the behaviour of the system. The key ideas of model-based machine learning are introduced through a series of case studies involving real-world applications. Case studies play a central role because it is only in the context of applications that it makes sense to discuss modelling assumptions. Each chapter introduces one case study and works through step-by-step to solve it using a model-based approach. The aim is not just to explain machine learning methods, but also showcase how to create, debug, and evolve them to solve a problem. Features: Explores the assumptions being made by machine learning systems and the effect these assumptions have when the system is applied to concrete problems. Explains machine learning concepts as they arise in real-world case studies. Shows how to diagnose, understand and address problems with machine learning systems. Full source code available, allowing models and results to be reproduced and explored. Includes optional deep-dive sections with more mathematical details on inference algorithms for the interested reader.