Photon Management in Solar Cells

Photon Management in Solar Cells

Author: Ralf B. Wehrspohn

Publisher: John Wiley & Sons

Published: 2015-06-08

Total Pages: 376

ISBN-13: 3527411755

DOWNLOAD EBOOK

Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, applied and surface physicists.


Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications

Author: Srabanti Ghosh

Publisher: John Wiley & Sons

Published: 2021-06-01

Total Pages: 38

ISBN-13: 3527345574

DOWNLOAD EBOOK

A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.


Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology

Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology

Author: Ashok K. Vaseashta

Publisher: Springer Science & Business Media

Published: 2007-04-29

Total Pages: 432

ISBN-13: 1402035624

DOWNLOAD EBOOK

The principal aim of this NATO Advanced Study Institute (ASI) "Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology" was to present a contemporary overview of the field of nanostructured and advanced electronic materials. Nanotechnology is an emerging scientific field receiving significant worldwide attention. On a nanometer scale, materials or structures may possess new and unique physical properties. Some of these are now known to the scientific community, but there may well be many properties not yet known to us, rendering it as a fascinating area of research and a suitable subject for a NATO ASI. Yet another aspect of the field is the possibility for creating meta-stable phases with unconventional properties and the ultra-miniaturization of current devices, sensors, and machines. Such nanotechnological and related advanced materials have an extremely wide range of potential applications, viz. nanoscale electronics, sensors, optoelectronics, photonics, nano-biological systems, na- medicine, energy storage systems, etc. This is a wide-ranging subject area and therefore requires the formation of multi-disciplinary teams of physicists, chemists, materials scientists, engineers, molecular biologists, pharmacologists, and others to work together on the synthesis and processing of materials and structures, the understanding of their physical properties, the design and fabrication of devices, etc. Hence, in formulating our ASI, we adopted an int- disciplinary approach, bringing together recognised experts in the various fields while retaining a level of treatment accessible to those active in specific individual areas of research and development.


Design, Fabrication, and Significance of Advanced Nanostructured Materials

Design, Fabrication, and Significance of Advanced Nanostructured Materials

Author: Singh, Laxman

Publisher: IGI Global

Published: 2024-09-27

Total Pages: 412

ISBN-13:

DOWNLOAD EBOOK

Nanostructured materials are revolutionizing various industries with their unique properties. Yet, researchers and practitioners need help accessing comprehensive and up-to-date literature on their synthesis, characterization, and applications. Existing books often focus narrowly on synthesis methods, overlooking critical aspects such as design, spectroscopic characterization techniques, and diverse applications in electronics, optoelectronics, biomedical devices, and more. This gap in the literature leaves academics, researchers, and industrial scientists needing a comprehensive resource to address their pressing questions and needs in the field. Design, Fabrication, and Significance of Advanced Nanostructured Materials bridges this gap by offering a holistic approach to understanding these materials. It provides in-depth coverage of the latest synthetic approaches, spectroscopic characterization techniques, and advanced applications in various fields. With ten chapters covering a wide range of topics, from the basics of nanostructured materials to advanced fabrication techniques, this book serves as a one-stop resource for anyone looking to delve into this exciting field. This book aims to empower researchers and industrialists with the knowledge to innovate and advance in their fields by providing clear explanations and solutions to critical questions surrounding nanostructured materials.


Advanced Silicon Materials for Photovoltaic Applications

Advanced Silicon Materials for Photovoltaic Applications

Author: Sergio Pizzini

Publisher: John Wiley & Sons

Published: 2012-06-07

Total Pages: 412

ISBN-13: 1118312163

DOWNLOAD EBOOK

Today, the silicon feedstock for photovoltaic cells comes from processes which were originally developed for the microelectronic industry. It covers almost 90% of the photovoltaic market, with mass production volume at least one order of magnitude larger than those devoted to microelectronics. However, it is hard to imagine that this kind of feedstock (extremely pure but heavily penalized by its high energy cost) could remain the only source of silicon for a photovoltaic market which is in continuous expansion, and which has a cumulative growth rate in excess of 30% in the last few years. Even though reports suggest that the silicon share will slowly decrease in the next twenty years, finding a way to manufacture a specific solar grade feedstock in large quantities, at a low cost while maintaining the quality needed, still remains a crucial issue. Thin film and quantum confinement-based silicon cells might be a complementary solution. Advanced Silicon Materials for Photovoltaic Applications has been designed to describe the full potentialities of silicon as a multipurpose material and covers: Physical, chemical and structural properties of silicon Production routes including the promise of low cost feedstock for PV applications Defect engineering and the role of impurities and defects Characterization techniques, and advanced analytical techniques for metallic and non-metallic impurities Thin film silicon and thin film solar cells Innovative quantum effects, and 3rd generation solar cells With contributions from internationally recognized authorities, this book gives a comprehensive analysis of the state-of-the-art of process technologies and material properties, essential for anyone interested in the application and development of photovoltaics.


Thermoplasmonics

Thermoplasmonics

Author: Guillaume Baffou

Publisher: Cambridge University Press

Published: 2017-10-19

Total Pages: 309

ISBN-13: 1108418325

DOWNLOAD EBOOK

An overview of thermoplasmonics including the underlying theory in nanophotonics and applications in nanoengineering and nanomedicine.


Synchrotron Radiation in Materials Science

Synchrotron Radiation in Materials Science

Author: Chunhai Fan

Publisher: John Wiley & Sons

Published: 2018-05-29

Total Pages: 846

ISBN-13: 3527339868

DOWNLOAD EBOOK

Meeting the long-felt need for in-depth information on one of the most advanced material characterization methods, a top team of editors and authors from highly prestigious facilities and institutions covers a range of synchrotron techniques that have proven useful for materials research. Following an introduction to synchrotron radiation and its sources, the second part goes on to describe the various techniques that benefit from this especially bright light, including X-ray absorption, diffraction, scattering, imaging, and lithography. The thrid and final part provides an overview of the applications of synchrotron radiation in materials science. bridging the gap between specialists in synchrotron research and material scientists, this is a unique and indispensable resource for academic and industrial researchers alike.


Scanning Probe Microscopy in Nanoscience and Nanotechnology 3

Scanning Probe Microscopy in Nanoscience and Nanotechnology 3

Author: Bharat Bhushan

Publisher: Springer Science & Business Media

Published: 2012-10-16

Total Pages: 634

ISBN-13: 3642254136

DOWNLOAD EBOOK

This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.


Nanostructured Solar Cells

Nanostructured Solar Cells

Author: Narottam Das

Publisher: BoD – Books on Demand

Published: 2017-02-22

Total Pages: 316

ISBN-13: 953512935X

DOWNLOAD EBOOK

Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.