Probability and Statistical Physics in St. Petersburg

Probability and Statistical Physics in St. Petersburg

Author: V. Sidoravicius

Publisher: American Mathematical Soc.

Published: 2016-04-28

Total Pages: 482

ISBN-13: 1470422484

DOWNLOAD EBOOK

This book brings a reader to the cutting edge of several important directions of the contemporary probability theory, which in many cases are strongly motivated by problems in statistical physics. The authors of these articles are leading experts in the field and the reader will get an exceptional panorama of the field from the point of view of scientists who played, and continue to play, a pivotal role in the development of the new methods and ideas, interlinking it with geometry, complex analysis, conformal field theory, etc., making modern probability one of the most vibrant areas in mathematics.


Probability and Statistical Physics in Two and More Dimensions

Probability and Statistical Physics in Two and More Dimensions

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 481

ISBN-13: 0821868632

DOWNLOAD EBOOK

This volume is a collection of lecture notes for six of the ten courses given in Buzios, Brazil by prominent probabilists at the 2010 Clay Mathematics Institute Summer School, ``Probability and Statistical Physics in Two and More Dimensions'' and at the XIV Brazilian School of Probability. In the past ten to fifteen years, various areas of probability theory related to statistical physics, disordered systems and combinatorics have undergone intensive development. A number of these developments deal with two-dimensional random structures at their critical points, and provide new tools and ways of coping with at least some of the limitations of Conformal Field Theory that had been so successfully developed in the theoretical physics community to understand phase transitions of two-dimensional systems. Included in this selection are detailed accounts of all three foundational courses presented at the Clay school--Schramm-Loewner Evolution and other Conformally Invariant Objects, Noise Sensitivity and Percolation, Scaling Limits of Random Trees and Planar Maps--together with contributions on Fractal and Multifractal properties of SLE and Conformal Invariance of Lattice Models. Finally, the volume concludes with extended articles based on the courses on Random Polymers and Self-Avoiding Walks given at the Brazilian School of Probability during the final week of the school. Together, these notes provide a panoramic, state-of-the-art view of probability theory areas related to statistical physics, disordered systems and combinatorics. Like the lectures themselves, they are oriented towards advanced students and postdocs, but experts should also find much of interest.


Probability and Statistical Physics in St. Petersburg

Probability and Statistical Physics in St. Petersburg

Author: V. Sidoravicius

Publisher:

Published: 2015

Total Pages: 482

ISBN-13: 9781470428839

DOWNLOAD EBOOK

5. Standard and non-standard approximation of -algebras: The problem -- References -- Branching random walks and Gaussian fields -- 1. Introduction -- 2. Branching Random Walks -- 3. The Discrete Gaussian Free Field -- References -- Back Cover


Probability on Graphs

Probability on Graphs

Author: Geoffrey Grimmett

Publisher: Cambridge University Press

Published: 2018-01-25

Total Pages: 279

ISBN-13: 1108542999

DOWNLOAD EBOOK

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.


Probabilities in Physics

Probabilities in Physics

Author: Claus Beisbart

Publisher: Oxford University Press

Published: 2011-09-15

Total Pages: 450

ISBN-13: 0199577439

DOWNLOAD EBOOK

This volume provides a philosophical appraisal of probabilities in all of physics. It makes sense of probabilistic statements as they occur in the various physical theories and models and presents a plausible epistemology and metaphysics of probabilities.


Proceedings of the St. Petersburg Mathematical Society, Volume XIV

Proceedings of the St. Petersburg Mathematical Society, Volume XIV

Author: Sankt-Peterburgskoe matematicheskoe obshchestvo

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 242

ISBN-13: 082184802X

DOWNLOAD EBOOK

Contains articles on analysis, probability, partial differential operators, frames, and other areas of mathematics. This volume also contains a comprehensive article about the classification of pseudo-regular convex polyhedra. It is suitable for a broad group of graduate students and researchers interested in the topics presented here.


Mathematical Statistical Physics

Mathematical Statistical Physics

Author:

Publisher: Elsevier

Published: 2006-06-27

Total Pages: 849

ISBN-13: 0080479235

DOWNLOAD EBOOK

The proceedings of the 2005 les Houches summer school on Mathematical Statistical Physics give and broad and clear overview on this fast developing area of interest to both physicists and mathematicians. - Introduction to a field of math with many interdisciplinary connections in physics, biology, and computer science - Roadmap to the next decade of mathematical statistical mechanics - Volume for reference years to come


Sojourns in Probability Theory and Statistical Physics - III

Sojourns in Probability Theory and Statistical Physics - III

Author: Vladas Sidoravicius

Publisher: Springer Nature

Published: 2019-10-17

Total Pages: 350

ISBN-13: 9811503028

DOWNLOAD EBOOK

Charles M. (Chuck) Newman has been a leader in Probability Theory and Statistical Physics for nearly half a century. This three-volume set is a celebration of the far-reaching scientific impact of his work. It consists of articles by Chuck’s collaborators and colleagues across a number of the fields to which he has made contributions of fundamental significance. This publication was conceived during a conference in 2016 at NYU Shanghai that coincided with Chuck's 70th birthday. The sub-titles of the three volumes are: I. Spin Glasses and Statistical Mechanics II. Brownian Web and Percolation III. Interacting Particle Systems and Random Walks The articles in these volumes, which cover a wide spectrum of topics, will be especially useful for graduate students and researchers who seek initiation and inspiration in Probability Theory and Statistical Physics.


Lattice Models and Conformal Field Theory

Lattice Models and Conformal Field Theory

Author: Franck Gabriel

Publisher: American Mathematical Society, Courant Institute of Mathematical Sciences at New York University

Published: 2024-08-23

Total Pages: 219

ISBN-13: 1470456184

DOWNLOAD EBOOK

This book introduces the mathematical ideas connecting Statistical Mechanics and Conformal Field Theory (CFT). Building advanced structures on top of more elementary ones, the authors map out a well-posed road from simple lattice models to CFTs. Structured in two parts, the book begins by exploring several two-dimensional lattice models, their phase transitions, and their conjectural connection with CFT. Through these lattice models and their local fields, the fundamental ideas and results of two-dimensional CFTs emerge, with a special emphasis on the Unitary Minimal Models of CFT. Delving into the delicate ideas that lead to the classification of these CFTs, the authors discuss the assumptions on the lattice models whose scaling limits are described by CFTs. This produces a probabilistic rather than an axiomatic or algebraic definition of CFTs. Suitable for graduate students and researchers in mathematics and physics, Lattice Models and Conformal Field Theory introduces the ideas at the core of Statistical Field Theory. Assuming only undergraduate probability and complex analysis, the authors carefully motivate every argument and assumption made. Concrete examples and exercises allow readers to check their progress throughout.


Analytic Trends in Mathematical Physics

Analytic Trends in Mathematical Physics

Author: Houssam Abdul-Rahman

Publisher: American Mathematical Soc.

Published: 2020-01-06

Total Pages: 210

ISBN-13: 1470448416

DOWNLOAD EBOOK

This volume contains the proceedings of the Arizona School of Analysis and Mathematical Physics, held from March 5–9, 2018, at the University of Arizona, Tucson, Arizona. A main goal of this school was to introduce graduate students and postdocs to exciting topics of current research that are both influenced by physical intuition and require the use of cutting-edge mathematics. The articles in this volume reflect recent progress and innovative techniques developed within mathematical physics. Two works investigate spectral gaps of quantum spin systems. Specifically, Abdul-Rahman, Lemm, Lucia, Nachtergaele, and Young consider decorated AKLT models, and Lemm demonstrates a finite-size criterion for D D-dimensional models. Bachmann, De Roeck, and Fraas summarize a recent proof of the adiabatic theorem, while Bachmann, Bols, De Roeck, and Fraas discuss linear response for interacting Hall insulators. Models on general graphs are the topic of the articles by Fischbacher, on higher spin XXZ, and by Latushkin and Sukhtaiev, on an index theorem for Schrödinger operators. Probabilistic applications are the focus of the articles by DeMuse and Yin, on exponential random graphs, by Saenz, on KPZ universality, and by Stolz, on disordered quantum spin chains. In all, the diversity represented here is a testament to the enthusiasm this rich field of mathematical physics generates.