Probabilistic Structural Mechanics Handbook

Probabilistic Structural Mechanics Handbook

Author: C.R. Sundararajan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 756

ISBN-13: 1461517710

DOWNLOAD EBOOK

The need for a comprehensive book on probabilistic structural mechanics that brings together the many analytical and computational methods developed over the years and their applications in a wide spectrum of industries-from residential buildings to nuclear power plants, from bridges to pressure vessels, from steel structures to ceramic structures-became evident from the many discussions the editor had with practising engineers, researchers and professors. Because no single individual has the expertise to write a book with such a di.verse scope, a group of 39 authors from universities, research laboratories, and industries from six countries in three continents was invited to write 30 chapters covering the various aspects of probabilistic structural mechanics. The editor and the authors believe that this handbook will serve as a reference text to practicing engineers, teachers, students and researchers. It may also be used as a textbook for graduate-level courses in probabilistic structural mechanics. The editor wishes to thank the chapter authors for their contributions. This handbook would not have been a reality without their collaboration.


Handbook of Probabilistic Models

Handbook of Probabilistic Models

Author: Pijush Samui

Publisher: Butterworth-Heinemann

Published: 2019-10-05

Total Pages: 592

ISBN-13: 0128165464

DOWNLOAD EBOOK

Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems


Probabilistic Structural Mechanics Handbook

Probabilistic Structural Mechanics Handbook

Author: C.R. Sundararajan

Publisher: Springer

Published: 2012-10-21

Total Pages: 745

ISBN-13: 9781461357131

DOWNLOAD EBOOK

The need for a comprehensive book on probabilistic structural mechanics that brings together the many analytical and computational methods developed over the years and their applications in a wide spectrum of industries-from residential buildings to nuclear power plants, from bridges to pressure vessels, from steel structures to ceramic structures-became evident from the many discussions the editor had with practising engineers, researchers and professors. Because no single individual has the expertise to write a book with such a di.verse scope, a group of 39 authors from universities, research laboratories, and industries from six countries in three continents was invited to write 30 chapters covering the various aspects of probabilistic structural mechanics. The editor and the authors believe that this handbook will serve as a reference text to practicing engineers, teachers, students and researchers. It may also be used as a textbook for graduate-level courses in probabilistic structural mechanics. The editor wishes to thank the chapter authors for their contributions. This handbook would not have been a reality without their collaboration.


Probabilistic Theory of Structures

Probabilistic Theory of Structures

Author: Isaac Elishakoff

Publisher: Courier Corporation

Published: 1999-01-01

Total Pages: 532

ISBN-13: 9780486406916

DOWNLOAD EBOOK

Well-written introduction covers the elements of the theory of probability from two or more random variables, the reliability of such multivariable structures, the theory of random function, Monte Carlo methods of treating problems incapable of exact solution, and more. No previous knowledge of the subject necessary. Numerous examples, illustrative figures.


Probabilistic Methods In The Theory Of Structures: Strength Of Materials, Random Vibrations, And Random Buckling

Probabilistic Methods In The Theory Of Structures: Strength Of Materials, Random Vibrations, And Random Buckling

Author: Isaac E Elishakoff

Publisher: World Scientific

Published: 2017-03-23

Total Pages: 523

ISBN-13: 9813149876

DOWNLOAD EBOOK

The first edition of this book appeared over three decades ago (Wiley-Interscience, 1983), whereas the second one saw light on the verge of new millennium (Dover, 1999). This is third, corrected and expanded edition that appears in conjunction with its companion volume .Thus, the reader is able to both get acquainted with the theoretical material and be able to master some of the problems, following Chinese dictum: I hear and I forget. I see and I remember. I do and I understand — Confucius.The main idea of the book lies in the fact that three topics: probabilistic strength of materials, random vibrations, and probabilistic buckling are presented in a single package allowing one to see the forest in between the trees. Indeed, these three topics usually are presented in separate manners, in different specialized books. Here, the reader gets a feeling of true unity of the subject at large in order to appreciate that in the end what one wants is reliability of the structure, in conjunction with its operating conditions.As the author describes in the Preface of the second edition, this book was not conceived ab initio, as a book that author strived to compose. Rather, it was forced, as it were, upon me due to two reasons. One was rather a surprising but understandable requirement in the venerable Delft University of Technology, The Netherlands to prepare the lecture notes for students with the view of reducing skyrocketing costs of acquisition of textbooks by the students. The other one was an unusually warm acceptance of the notes that the author prepared while at Delft University of Technology and later in Haifa, at the Technion-Israel Institute of Technology by the legendary engineering scientist Warner Tjardus Koiter (1914-1997). The energy necessary to prepare the second and third editions came from enthusiastic reviews that appeared in various sources. Author embraced the simplicity of exposition as the main virtue following Isaac Newton's view that 'Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things.'


Handbook of Structural Life Assessment

Handbook of Structural Life Assessment

Author: Raouf A. Ibrahim

Publisher: John Wiley & Sons

Published: 2017-03-29

Total Pages: 1016

ISBN-13: 1119135494

DOWNLOAD EBOOK

This important, self-contained reference deals with structural life assessment (SLA) and structural health monitoring (SHM) in a combined form. SLA periodically evaluates the state and condition of a structural system and provides recommendations for possible maintenance actions or the end of structural service life. It is a diversified field and relies on the theories of fracture mechanics, fatigue damage process, and reliability theory. For common structures, their life assessment is not only governed by the theory of fracture mechanics and fatigue damage process, but by other factors such as corrosion, grounding, and sudden collision. On the other hand, SHM deals with the detection, prediction, and location of crack development online. Both SLA and SHM are combined in a unified and coherent treatment.


Optimization Of Structural And Mechanical Systems

Optimization Of Structural And Mechanical Systems

Author: Jasbir S Arora

Publisher: World Scientific

Published: 2007-09-05

Total Pages: 610

ISBN-13: 9814477222

DOWNLOAD EBOOK

Computational optimization methods have matured over the last few years due to extensive research by applied mathematicians and engineers. These methods have been applied to many practical applications. Several general-purpose optimization programs and programs for specific engineering applications have become available to solve particular optimization problems.Written by leading researchers in the field of optimization, this highly readable book covers state-of-the-art computational algorithms as well as applications of optimization to structural and mechanical systems. Formulations of the problems and numerical solutions are presented, and topics requiring further research are also suggested.


Structural Reliability

Structural Reliability

Author: Jorge Eduardo Hurtado

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 267

ISBN-13: 3540409874

DOWNLOAD EBOOK

The last decades have witnessed the development of methods for solving struc tural reliability problems, which emerged from the efforts of numerous re searchers all over the world. For the specific and most common problem of determining the probability of failure of a structural system in which the limit state function g( x) = 0 is only implicitly known, the proposed methods can be grouped into two main categories: • Methods based on the Taylor expansion of the performance function g(x) about the most likely failure point (the design point), which is determined in the solution process. These methods are known as FORM and SORM (First- and Second Order Reliability Methods, respectively). • Monte Carlo methods, which require repeated calls of the numerical (nor mally finite element) solver of the structural model using a random real ization of the basic variable set x each time. In the first category of methods only SORM can be considered of a wide applicability. However, it requires the knowledge of the first and second deriva tives of the performance function, whose calculation in several dimensions either implies a high computational effort when faced with finite difference techniques or special programs when using perturbation techniques, which nevertheless require the use of large matrices in their computations. In or der to simplify this task, use has been proposed of techniques that can be regarded as variants of the Response Surface Method.