Bayesian and grAphical Models for Biomedical Imaging

Bayesian and grAphical Models for Biomedical Imaging

Author: M. Jorge Cardoso

Publisher: Springer

Published: 2014-09-22

Total Pages: 139

ISBN-13: 3319122894

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the First International Workshop on Bayesian and grAphical Models for Biomedical Imaging, BAMBI 2014, held in Cambridge, MA, USA, in September 2014 as a satellite event of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2014. The 11 revised full papers presented were carefully reviewed and selected from numerous submissions with a key aspect on probabilistic modeling applied to medical image analysis. The objectives of this workshop compared to other workshops, e.g. machine learning in medical imaging, have a stronger mathematical focus on the foundations of probabilistic modeling and inference. The papers highlight the potential of using Bayesian or random field graphical models for advancing scientific research in biomedical image analysis or for the advancement of modeling and analysis of medical imaging data.


Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging

Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging

Author: Henning Müller

Publisher: Springer

Published: 2017-06-30

Total Pages: 227

ISBN-13: 3319611887

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-workshop proceedings of the International Workshop on Medical Computer Vision, MCV 2016, and of the International Workshop on Bayesian and grAphical Models for Biomedical Imaging, BAMBI 2016, held in Athens, Greece, in October 2016, held in conjunction with the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016. The 13 papers presented in MCV workshop and the 6 papers presented in BAMBI workshop were carefully reviewed and selected from numerous submissions. The goal of the MCV workshop is to explore the use of "big data” algorithms for harvesting, organizing and learning from large-scale medical imaging data sets and for general-purpose automatic understanding of medical images. The BAMBI workshop aims to highlight the potential of using Bayesian or random field graphical models for advancing research in biomedical image analysis.


Probabilistic Graphical Models

Probabilistic Graphical Models

Author: Daphne Koller

Publisher: MIT Press

Published: 2009-07-31

Total Pages: 1270

ISBN-13: 0262258358

DOWNLOAD EBOOK

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.


Probabilistic Modeling for Segmentation in Magnetic Resonance Images of the Human Brain

Probabilistic Modeling for Segmentation in Magnetic Resonance Images of the Human Brain

Author: Michael Wels

Publisher: Logos Verlag Berlin GmbH

Published: 2010

Total Pages: 147

ISBN-13: 3832526315

DOWNLOAD EBOOK

In this book the fully automatic generation of semantic annotations for medical imaging data by means of medical image segmentation and labeling is addressed. In particular, the focus is on the segmentation of the human brain and related structures from magnetic resonance imaging (MRI) data. Three novel probabilistic methods from the field of database-guided knowledge-based medical image segmentation are presented. Each of the methods is applied to one of three MRI segmentation scenarios: 1) 3-D MRI brain tissue classification and intensity non-uniformity correction, 2) pediatric brain cancer segmentation in multi-spectral 3-D MRI, and 3) 3-D MRI anatomical brain structure segmentation. All the newly developed methods make use of domain knowledge encoded by probabilistic boosting-trees (PBT), which is a recent machine learning technique. For all the methods uniform probabilistic formalisms are presented that group the methods into the broader context of probabilistic modeling for the purpose of image segmentation. It is shown by comparison with other methods from the literature that in all the scenarios the newly developed algorithms in most cases give more accurate results and have a lower computational cost. Evaluation on publicly available benchmarking data sets ensures reliable comparability of the results to those of other current and future methods. One of the methods successfully participated in the ongoing online caudate segmentation challenge (www.cause07.org), where it ranks among the top five methods for this particular segmentation scenario.


Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics

Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics

Author: M. Jorge Cardoso

Publisher: Springer

Published: 2017-09-06

Total Pages: 262

ISBN-13: 331967675X

DOWNLOAD EBOOK

This book constitutes the refereed joint proceedings of the First International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2017, the 6th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2017, and the Third International Workshop on Imaging Genetics, MICGen 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017. The 7 full papers presented at GRAIL 2017, the 10 full papers presented at MFCA 2017, and the 5 full papers presented at MICGen 2017 were carefully reviewed and selected. The GRAIL papers cover a wide range of graph based medical image analysis methods and applications, including probabilistic graphical models, neuroimaging using graph representations, machine learning for diagnosis prediction, and shape modeling. The MFCA papers deal with theoretical developments in non-linear image and surface registration in the context of computational anatomy. The MICGen papers cover topics in the field of medical genetics, computational biology and medical imaging.


Machine Learning and Probabilistic Graphical Models for Decision Support Systems

Machine Learning and Probabilistic Graphical Models for Decision Support Systems

Author: Kim Phuc Tran

Publisher: CRC Press

Published: 2022-10-13

Total Pages: 330

ISBN-13: 100077144X

DOWNLOAD EBOOK

This book presents recent advancements in research, a review of new methods and techniques, and applications in decision support systems (DSS) with Machine Learning and Probabilistic Graphical Models, which are very effective techniques in gaining knowledge from Big Data and in interpreting decisions. It explores Bayesian network learning, Control Chart, Reinforcement Learning for multicriteria DSS, Anomaly Detection in Smart Manufacturing with Federated Learning, DSS in healthcare, DSS for supply chain management, etc. Researchers and practitioners alike will benefit from this book to enhance the understanding of machine learning, Probabilistic Graphical Models, and their uses in DSS in the context of decision making with uncertainty. The real-world case studies in various fields with guidance and recommendations for the practical applications of these studies are introduced in each chapter.


Mastering Probabilistic Graphical Models Using Python

Mastering Probabilistic Graphical Models Using Python

Author: Ankur Ankan

Publisher: Packt Publishing Ltd

Published: 2015-08-03

Total Pages: 284

ISBN-13: 1784395218

DOWNLOAD EBOOK

Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python About This Book Gain in-depth knowledge of Probabilistic Graphical Models Model time-series problems using Dynamic Bayesian Networks A practical guide to help you apply PGMs to real-world problems Who This Book Is For If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian Learning or Probabilistic Graphical Models, this book will help you to understand the details of Graphical Models and use it in your data science problems. This book will also help you select the appropriate model as well as the appropriate algorithm for your problem. What You Will Learn Get to know the basics of Probability theory and Graph Theory Work with Markov Networks Implement Bayesian Networks Exact Inference Techniques in Graphical Models such as the Variable Elimination Algorithm Understand approximate Inference Techniques in Graphical Models such as Message Passing Algorithms Sample algorithms in Graphical Models Grasp details of Naive Bayes with real-world examples Deploy PGMs using various libraries in Python Gain working details of Hidden Markov Models with real-world examples In Detail Probabilistic Graphical Models is a technique in machine learning that uses the concepts of graph theory to compactly represent and optimally predict values in our data problems. In real world problems, it's often difficult to select the appropriate graphical model as well as the appropriate inference algorithm, which can make a huge difference in computation time and accuracy. Thus, it is crucial to know the working details of these algorithms. This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also to run different inference algorithms on them. There is a complete chapter devoted to the most widely used networks Naive Bayes Model and Hidden Markov Models (HMMs). These models have been thoroughly discussed using real-world examples. Style and approach An easy-to-follow guide to help you understand Probabilistic Graphical Models using simple examples and numerous code examples, with an emphasis on more widely used models.