Probabilistic Combinatorics and Its Applications

Probabilistic Combinatorics and Its Applications

Author: Bľa Bollobs̀ (ed)

Publisher: American Mathematical Soc.

Published: 1991

Total Pages: 214

ISBN-13: 082185500X

DOWNLOAD EBOOK

Probabilistic methods have become a vital tool in the arsenal of every combinatorialist. The theory of random graphs is still a prime area for the use of probabilistic methods, and, over the years, these methods have also proved of paramount importance in many associated areas such as the design and analysis of computer algorithms. In recent years, probabilistic combinatorics has undergone revolutionary changes as the result of the appearance of some exciting new techniques such as martingale inequalities, discrete isoperimetric inequalities, Fourier analysis on groups, eigenvalue techniques, branching processes, and rapidly mixing Markov chains. The aim of this volume is to review briefly the classical results in the theory of random graphs and to present several of the important recent developments in probabilistic combinatorics, together with some applications. The first paper contains a brief introduction to the theory of random graphs. The second paper reviews explicit constructions of random-like graphs and discusses graphs having a variety of useful properties. Isoperimetric inequalities, of paramount importance in probabilistic combinatorics, are covered in the third paper. The chromatic number of random graphs is presented in the fourth paper, together with a beautiful inequality due to Janson and the important and powerful Stein-Chen method for Poisson approximation. The aim of the fifth paper is to present a number of powerful new methods for proving that a Markov chain is "rapidly mixing" and to survey various related questions, while the sixth paper looks at the same topic in a very different context. For the random walk on the cube, the convergence to the stable distribution is best analysed through Fourier analysis; the final paper examines this topic and proceeds to several more sophisticated applications. Open problems can be found throughout each paper.


The Probabilistic Method

The Probabilistic Method

Author: Noga Alon

Publisher: John Wiley & Sons

Published: 2015-11-02

Total Pages: 396

ISBN-13: 1119062071

DOWNLOAD EBOOK

Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.


Probabilistic Methods for Algorithmic Discrete Mathematics

Probabilistic Methods for Algorithmic Discrete Mathematics

Author: Michel Habib

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 342

ISBN-13: 3662127881

DOWNLOAD EBOOK

Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.


Ten Lectures on the Probabilistic Method

Ten Lectures on the Probabilistic Method

Author: Joel Spencer

Publisher: SIAM

Published: 1994-01-01

Total Pages: 98

ISBN-13: 9781611970074

DOWNLOAD EBOOK

This update of the 1987 title of the same name is an examination of what is currently known about the probabilistic method, written by one of its principal developers. Based on the notes from Spencer's 1986 series of ten lectures, this new edition contains an additional lecture: The Janson inequalities. These inequalities allow accurate approximation of extremely small probabilities. A new algorithmic approach to the Lovasz Local Lemma, attributed to Jozsef Beck, has been added to Lecture 8, as well. Throughout the monograph, Spencer retains the informal style of his original lecture notes and emphasizes the methodology, shunning the more technical "best possible" results in favor of clearer exposition. The book is not encyclopedic--it contains only those examples that clearly display the methodology. The probabilistic method is a powerful tool in graph theory, combinatorics, and theoretical computer science. It allows one to prove the existence of objects with certain properties (e.g., colorings) by showing that an appropriately defined random object has positive probability of having those properties.


Graph Colouring and the Probabilistic Method

Graph Colouring and the Probabilistic Method

Author: Michael Molloy

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 320

ISBN-13: 3642040160

DOWNLOAD EBOOK

Over the past decade, many major advances have been made in the field of graph coloring via the probabilistic method. This monograph, by two of the best on the topic, provides an accessible and unified treatment of these results, using tools such as the Lovasz Local Lemma and Talagrand's concentration inequality.


Analytic Combinatorics

Analytic Combinatorics

Author: Philippe Flajolet

Publisher: Cambridge University Press

Published: 2009-01-15

Total Pages: 825

ISBN-13: 1139477161

DOWNLOAD EBOOK

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.


Combinatorics and Random Matrix Theory

Combinatorics and Random Matrix Theory

Author: Jinho Baik

Publisher: American Mathematical Soc.

Published: 2016-06-22

Total Pages: 478

ISBN-13: 0821848410

DOWNLOAD EBOOK

Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.


Random Graphs

Random Graphs

Author: V. F. Kolchin

Publisher: Cambridge University Press

Published: 1999

Total Pages: 266

ISBN-13: 0521440815

DOWNLOAD EBOOK

Results of research on classical combinatorial structures such as random graphs, permutations, and systems of random linear equations in finite fields.


Recent Trends in Combinatorics

Recent Trends in Combinatorics

Author: Andrew Beveridge

Publisher: Springer

Published: 2016-04-12

Total Pages: 775

ISBN-13: 3319242989

DOWNLOAD EBOOK

This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute for Mathematics and its Applications during Fall 2014, when combinatorics was the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The three-part structure of the volume reflects the three workshops held during Fall 2014. In the first part, topics on extremal and probabilistic combinatorics are presented; part two focuses on additive and analytic combinatorics; and part three presents topics in geometric and enumerative combinatorics. This book will be of use to those who research combinatorics directly or apply combinatorial methods to other fields.


Normal Approximation by Stein’s Method

Normal Approximation by Stein’s Method

Author: Louis H.Y. Chen

Publisher: Springer Science & Business Media

Published: 2010-10-13

Total Pages: 411

ISBN-13: 3642150071

DOWNLOAD EBOOK

Since its introduction in 1972, Stein’s method has offered a completely novel way of evaluating the quality of normal approximations. Through its characterizing equation approach, it is able to provide approximation error bounds in a wide variety of situations, even in the presence of complicated dependence. Use of the method thus opens the door to the analysis of random phenomena arising in areas including statistics, physics, and molecular biology. Though Stein's method for normal approximation is now mature, the literature has so far lacked a complete self contained treatment. This volume contains thorough coverage of the method’s fundamentals, includes a large number of recent developments in both theory and applications, and will help accelerate the appreciation, understanding, and use of Stein's method by providing the reader with the tools needed to apply it in new situations. It addresses researchers as well as graduate students in Probability, Statistics and Combinatorics.