Principles of Spacecraft Control

Principles of Spacecraft Control

Author: Walter Fichter

Publisher: Springer Nature

Published: 2022-10-11

Total Pages: 202

ISBN-13: 303104780X

DOWNLOAD EBOOK

The objective of this textbook is to provide the mathematical models and algorithms needed to develop a thorough understanding of all control system functions of a rigid body spacecraft. Relatively simple, but practically applicable algorithms are presented rather than recent advances. We try to avoid detailed and specialized issues that are of less importance for the fundamental understanding, such as detailed environment models, etc. Furthermore, control problems that can be cast in standard formulations and solved with existing methods are not treated here. Instead, we intend to provide an understanding of the principles, put them in an engineering context, and try to give all explanations as concise as possible. Besides conventional three-axis attitude control systems, the following topics are treated in this book:• Control of agile rotation maneuvers using control moment gyros • Precise pointing control with error classes for pointing instruments • Control systems with accelerometers and free-flying test masses, which provide low-disturbance or disturbance-free environments We believe that these topics are of considerable relevance for the design of future spacecraft control systems, especially in the field of science and Earth observation missions.


Manned Spacecraft Design Principles

Manned Spacecraft Design Principles

Author: Pasquale M. Sforza

Publisher: Elsevier

Published: 2015-11-13

Total Pages: 649

ISBN-13: 0124199763

DOWNLOAD EBOOK

Manned Spacecraft Design Principles presents readers with a brief, to-the-point primer that includes a detailed introduction to the information required at the preliminary design stage of a manned space transportation system. In the process of developing the preliminary design, the book covers content not often discussed in a standard aerospace curriculum, including atmospheric entry dynamics, space launch dynamics, hypersonic flow fields, hypersonic heat transfer, and skin friction, along with the economic aspects of space flight. Key concepts relating to human factors and crew support systems are also included, providing users with a comprehensive guide on how to make informed choices from an array of competing options. The text can be used in conjunction with Pasquale Sforza's, Commercial Aircraft Design Principles to form a complete course in Aircraft/Spacecraft Design. - Presents a brief, to-the-point primer that includes a detailed introduction to the information required at the preliminary design stage of a manned space transportation system - Involves the reader in the preliminary design of a modern manned spacecraft and associated launch vehicle - Includes key concepts relating to human factors and crew support systems - Contains standard, empirical, and classical methods in support of the design process - Culminates in the preparation of a professional quality design report


Space Vehicle Dynamics and Control

Space Vehicle Dynamics and Control

Author: Bong Wie

Publisher: AIAA

Published: 1998

Total Pages: 692

ISBN-13: 9781563472619

DOWNLOAD EBOOK

A textbook that incorporates the latest methods used for the analysis of spacecraft orbital, attitude, and structural dynamics and control. Spacecraft dynamics is treated as a dynamic system with emphasis on practical applications, typical examples of which are the analysis and redesign of the pointing control system of the Hubble Space Telescope and the analysis of an active vibrations control for the COFS (Control of Flexible Structures) Mast Flight System. In addition to the three subjects mentioned above, dynamic systems modeling, analysis, and control are also discussed. Annotation copyrighted by Book News, Inc., Portland, OR


Spacecraft Attitude Determination and Control

Spacecraft Attitude Determination and Control

Author: J.R. Wertz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 877

ISBN-13: 9400999070

DOWNLOAD EBOOK

Roger D. Werking Head, Attitude Determination and Control Section National Aeronautics and Space Administration/ Goddard Space Flight Center Extensiye work has been done for many years in the areas of attitude determination, attitude prediction, and attitude control. During this time, it has been difficult to obtain reference material that provided a comprehensive overview of attitude support activities. This lack of reference material has made it difficult for those not intimately involved in attitude functions to become acquainted with the ideas and activities which are essential to understanding the various aspects of spacecraft attitude support. As a result, I felt the need for a document which could be used by a variety of persons to obtain an understanding of the work which has been done in support of spacecraft attitude objectives. It is believed that this book, prepared by the Computer Sciences Corporation under the able direction of Dr. James Wertz, provides this type of reference. This book can serve as a reference for individuals involved in mission planning, attitude determination, and attitude dynamics; an introductory textbook for stu dents and professionals starting in this field; an information source for experimen ters or others involved in spacecraft-related work who need information on spacecraft orientation and how it is determined, but who have neither the time nor the resources to pursue the varied literature on this subject; and a tool for encouraging those who could expand this discipline to do so, because much remains to be done to satisfy future needs.


Safety Design for Space Systems

Safety Design for Space Systems

Author: Gary Eugene Musgrave

Publisher: Butterworth-Heinemann

Published: 2009-03-27

Total Pages: 988

ISBN-13: 0080559220

DOWNLOAD EBOOK

Progress in space safety lies in the acceptance of safety design and engineering as an integral part of the design and implementation process for new space systems. Safety must be seen as the principle design driver of utmost importance from the outset of the design process, which is only achieved through a culture change that moves all stakeholders toward front-end loaded safety concepts. This approach entails a common understanding and mastering of basic principles of safety design for space systems at all levels of the program organisation. Fully supported by the International Association for the Advancement of Space Safety (IAASS), written by the leading figures in the industry, with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle and the International Space Station, this book provides a comprehensive reference for aerospace engineers in industry. It addresses each of the key elements that impact on space systems safety, including: the space environment (natural and induced); human physiology in space; human rating factors; emergency capabilities; launch propellants and oxidizer systems; life support systems; battery and fuel cell safety; nuclear power generators (NPG) safety; habitat activities; fire protection; safety-critical software development; collision avoidance systems design; operations and on-orbit maintenance. - The only comprehensive space systems safety reference, its must-have status within space agencies and suppliers, technical and aerospace libraries is practically guaranteed - Written by the leading figures in the industry from NASA, ESA, JAXA, (et cetera), with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle, small and large satellite systems, and the International Space Station - Superb quality information for engineers, programme managers, suppliers and aerospace technologists; fully supported by the IAASS (International Association for the Advancement of Space Safety)


Spacecraft Thermal Control

Spacecraft Thermal Control

Author: J Meseguer

Publisher: Elsevier

Published: 2012-08-06

Total Pages: 413

ISBN-13: 0857096087

DOWNLOAD EBOOK

Thermal control systems are an essential element of spacecraft design, ensuring that all parts of the spacecraft remain within acceptable temperature ranges at all times. Spacecraft thermal control describes the fundamentals of thermal control design and reviews current thermal control technologies. The book begins with an overview of space missions and a description of the space environment, followed by coverage of the heat transfer processes relevant to the field. In the third part of the book, current thermal control technologies are described, and in the final part, design, analysis and testing techniques are reviewed. - Provides background on the fundamentals of heat transfer which gives the reader a better understanding of the phenomenon and the way Space Thermal Control Systems work - Merges the experience of the authors in teaching aerospace engineering topics with the experience as compilers of the 'Spacecraft Thermal Control Design Data Handbook' of the European Space Agency and the development of in orbit thermal control systems for Spanish and ESA Missions - The engineering approach is enhanced with a full section on Thermal Control Design, Analysis and Testing


Spacecraft Dynamics and Control

Spacecraft Dynamics and Control

Author: Enrico Canuto

Publisher: Butterworth-Heinemann

Published: 2018-03-08

Total Pages: 792

ISBN-13: 0081017952

DOWNLOAD EBOOK

Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems. - The book begins with an extensive introduction to attitude geometry and algebra and ends with the core themes: state-space dynamics and Embedded Model Control - Fundamentals of orbit, attitude and environment dynamics are treated giving emphasis to state-space formulation, disturbance dynamics, state feedback and prediction, closed-loop stability - Sensors and actuators are treated giving emphasis to their dynamics and modelling of measurement errors. Numerical tables are included and their data employed for numerical simulations - Orbit and attitude control problems of the European GOCE mission are the inspiration of numerical exercises and simulations - The suite of the attitude control modes of a GOCE-like mission is designed and simulated around the so-called mission state predictor - Solved and unsolved exercises are included within the text - and not separated at the end of chapters - for better understanding, training and application - Simulated results and their graphical plots are developed through MATLAB/Simulink code


Principles of Clinical Medicine for Space Flight

Principles of Clinical Medicine for Space Flight

Author: Michael R. Barratt

Publisher: Springer Science & Business Media

Published: 2008-03-20

Total Pages: 592

ISBN-13: 0387681647

DOWNLOAD EBOOK

Over the years, a large body of knowledge has developed regarding the ways in which space flight affects the health of the personnel involved. Now, for the first time, this clinical knowledge on how to diagnose and treat conditions that either develop during a mission or because of a mission has been compiled by Drs. Michael Barratt and Sam L. Pool of the NASA/Johnson Space Center. Complete with detailed information on the physiological and psychological affects of space flight as well as how to diagnose and treat everything from dental concerns to decompression to dermatological problems encountered, this text is a must have for all those associated with aerospace medicine.


Spacecraft Formation Flying

Spacecraft Formation Flying

Author: Kyle Alfriend

Publisher: Elsevier

Published: 2009-11-16

Total Pages: 403

ISBN-13: 0080559654

DOWNLOAD EBOOK

Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. - The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field - Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits - Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation