"The three volumes in this series ... containing 41 chapters contributed by over [one] hundred globally reputed scientists, provide lucid deliberations on the concepts, strategies, tools, methodologies and achievements of plant genomics presented in a typical class-room approach."--Back cover.
Genome of an organism is depicted by genetic linkage mapping and physical mapping. Genome mapping stated with genetic linkage mapping and contributed enormously in genome analysis and its improvement. Physical mapping emerged later and is the prelude to structural and functional genomics. Volume One of Principles and Practices of Plant Genomics introduces the historical background of genome mapping, and delineates modern methods in the field. This volume briefly introduces the historical background and overview on genome mapping. Chapters deliberating on different types of molecular markers, their detection, relative merits, shortcomings and applications; types of mapping populations, methods of their generation, applications; basic concepts and schematic depiction of construction of genetic linkage maps; concepts and strategies of mapping genes controlling qualitative and quantitative traits on framework genetic linkage maps; rationale, methodologies and implications of comparative mapping; principles, strategies, and outcome of map-based cloning; overviews on the recent advances on plant genomics and genome initiatives; and finally computer strategies and software.
The revised edition of the bestselling textbook, covering both classical and molecular plant breeding Principles of Plant Genetics and Breeding integrates theory and practice to provide an insightful examination of the fundamental principles and advanced techniques of modern plant breeding. Combining both classical and molecular tools, this comprehensive textbook describes the multidisciplinary strategies used to produce new varieties of crops and plants, particularly in response to the increasing demands to of growing populations. Illustrated chapters cover a wide range of topics, including plant reproductive systems, germplasm for breeding, molecular breeding, the common objectives of plant breeders, marketing and societal issues, and more. Now in its third edition, this essential textbook contains extensively revised content that reflects recent advances and current practices. Substantial updates have been made to its molecular genetics and breeding sections, including discussions of new breeding techniques such as zinc finger nuclease, oligonucleotide directed mutagenesis, RNA-dependent DNA methylation, reverse breeding, genome editing, and others. A new table enables efficient comparison of an expanded list of molecular markers, including Allozyme, RFLPs, RAPD, SSR, ISSR, DAMD, AFLP, SNPs and ESTs. Also, new and updated “Industry Highlights” sections provide examples of the practical application of plant breeding methods to real-world problems. This new edition: Organizes topics to reflect the stages of an actual breeding project Incorporates the most recent technologies in the field, such as CRSPR genome edition and grafting on GM stock Includes numerous illustrations and end-of-chapter self-assessment questions, key references, suggested readings, and links to relevant websites Features a companion website containing additional artwork and instructor resources Principles of Plant Genetics and Breeding offers researchers and professionals an invaluable resource and remains the ideal textbook for advanced undergraduates and graduates in plant science, particularly those studying plant breeding, biotechnology, and genetics.
This book presents the basic and applied aspects of sequencing of genes and genomes and their implication in the fine-scale elucidation of the plant genomes. The third volume presents an overview on the advances of plant genomics made in the past century; deliberations on the genomics resources; concepts, tools, strategies, and achievements of
Designed to inform and inspire the next generation of plant biotechnologists Plant Biotechnology and Genetics explores contemporary techniques and applications of plant biotechnology, illustrating the tremendous potential this technology has to change our world by improving the food supply. As an introductory text, its focus is on basic science and processes. It guides students from plant biology and genetics to breeding to principles and applications of plant biotechnology. Next, the text examines the critical issues of patents and intellectual property and then tackles the many controversies and consumer concerns over transgenic plants. The final chapter of the book provides an expert forecast of the future of plant biotechnology. Each chapter has been written by one or more leading practitioners in the field and then carefully edited to ensure thoroughness and consistency. The chapters are organized so that each one progressively builds upon the previous chapters. Questions set forth in each chapter help students deepen their understanding and facilitate classroom discussions. Inspirational autobiographical essays, written by pioneers and eminent scientists in the field today, are interspersed throughout the text. Authors explain how they became involved in the field and offer a personal perspective on their contributions and the future of the field. The text's accompanying CD-ROM offers full-color figures that can be used in classroom presentations with other teaching aids available online. This text is recommended for junior- and senior-level courses in plant biotechnology or plant genetics and for courses devoted to special topics at both the undergraduate and graduate levels. It is also an ideal reference for practitioners.
This book, the second of two volumes on the Gentianaceae, is devoted to aspects of biotechnology and their applications. It consists of 18 chapters and covers micropropagation by means of organogenesis or somatic embryogenesis, and single cell manipulation of various species belonging to the horticultural genera Blakstonia, Centaurium, Gentiana, Gentianalla and Swertia. Furthermore, the application of somatic cell hybridization, haploidization and genetic variation arising from tissue and organ culture for the production of plants with new horticultural traits, such as new flower colors or sizes, or with special pharmaceutical values, is treated in detail. Also discussed are molecular markers that facilitate breeding and cultivar identification, the preservation of genetic resources by cryopreservation, the postharvest physiology of cut Gentian flowers and potted plants, and different analytical methods for the evaluation of Gentians as sources of secondary metabolites, such as xanthones and flavonoids, secoiridoids and C-glucoflavonoids, and their positive impacts on human health. This volume as well as the companion book The Gentianaceae – Volume 1: Characterization and Ecology will serve as key reference works for scientists and students in the fields of botany, plant breeding, biotechnology and horticulture, as well as professional gardeners.
Die Pflanzenzucht enthält Elemente individueller und kultureller Selektion - ein Prozeß, den die langerwartete zweite Auflage hinsichtlich sowohl einzelner Pflanzen als auch kompletter Populationen unter die Lupe nimmt. Im Zuge der Aktualisierung des Stoffes wurden neue Themen aufgenommen: moderne Gewebekulturtechniken, molekularbiologische Verfahren, Aspekte der Wechselwirkung zwischen natürlicher und menschlicher Selektion und zwischen Genotyp und Umwelt sowie eine Reihe von Techniken zur Ertragssteigerung in ungünstigen Anbaugebieten. (05/99)
To comprehend the organizational principle of cellular functions at diff erent levels, an integrative approach with large-scale experiments, the so-called ‘omics’ data including genomics, transcriptomics, proteomics, and metabolomics, is needed. Omics aims at the collective characterization and quantifi cation of pools of biological molecules that translate into the structure, function, and dynamics of an organism or organisms. Currently, omics is an essential tool to understand the molecular systems that underlie various plant functions. Furthermore, in several plant species, the development of omicsresources has progressed to address the particular biological properties of individual species. Integration of knowledge from omics-based research is an emerging issue as researchers seek to identify significance, gain biological insights and promote translational research. From these perspectives, we intend to provide the emerging aspects of plant systems research based on omics and bioinformatics analyses together with their associated resources and technological advances. Th e present book covers a wide range of omics topics, and discusses the latest trends and application area of plant sciences. In this volume, we have highlighted the working solutions as well as open problems and future challenges in plant omics studies. We believe that this book will initiate and introduce readers to state-of-the-art developments and trends in omics-driven research.