This text attempts to enhance students' understanding of geological processes by showing them how to use chemical principles in solving geological problems. Emphasizing a quantitative approach to problem solving, this new text demonstrates how chemical principles control these processes in atomic and large-scale environments. In this way, students may see that the principles and applications of inorganic geochemistry are accessible, internally consistent, and useful for understanding the world around us. And as professional geologists, this understanding may help them to predict the outcome of chemical reactions occurring in geological processes and to realize the important role they play in characterizing our environment.
As this is the first general textbook for the field published in over twenty years, the editors have taken great care to make sure coverage is comprehensive. Diagenesis of organic matter, kerogens, exploration for fossil fuels, and many other subjects are discussed in detail to provide faculty and students with a thorough introduction to organic geochemistry.
Providing an exhaustive review of this topic, Inorganic Mass Spectrometry: Principles and Applications provides details on all aspects of inorganic mass spectrometry, from a historical overview of the topic to the principles and functions of mass separation and ion detection systems. Offering a comprehensive treatment of inorganic mass spectrometry, topics covered include: Recent developments in instrumentation Developing analytical techniques for measurements of trace and ultratrace impurities in different materials This broad textbook in inorganic mass spectrometry, presents the most important mass spectrometric techniques used in all fields of analytical chemistry. By covering recent developments and advances in all fields of inorganic mass spectrometry, this text provides researchers and students with information to answer any questions on this topic as well as providing the basic fundamentals for understanding this potentially complex, but increasingly relevant subject.
Environmental and Low-Temperature Geochemistry presents conceptual and quantitative principles of geochemistry in order to foster understanding of natural processes at and near the earth’s surface, as well as anthropogenic impacts on the natural environment. It provides the reader with the essentials of concentration, speciation and reactivity of elements in soils, waters, sediments and air, drawing attention to both thermodynamic and kinetic controls. Specific features include: • An introductory chapter that reviews basic chemical principles applied to environmental and low-temperature geochemistry • Explanation and analysis of the importance of minerals in the environment • Principles of aqueous geochemistry • Organic compounds in the environment • The role of microbes in processes such as biomineralization, elemental speciation and reduction-oxidation reactions • Thorough coverage of the fundamentals of important geochemical cycles (C, N, P, S) • Atmospheric chemistry • Soil geochemistry • The roles of stable isotopes in environmental analysis • Radioactive and radiogenic isotopes as environmental tracers and environmental contaminants • Principles and examples of instrumental analysis in environmental geochemistry The text concludes with a case study of surface water and groundwater contamination that includes interactions and reactions of naturally-derived inorganic substances and introduced organic compounds (fuels and solvents), and illustrates the importance of interdisciplinary analysis in environmental geochemistry. Readership: Advanced undergraduate and graduate students studying environmental/low T geochemistry as part of an earth science, environmental science or related program. Additional resources for this book can be found at: www.wiley.com/go/ryan/geochemistry.
Inorganic Chemistry for Geochemistry and Environmental Sciences: Fundamentals and Applications discusses the structure, bonding and reactivity of molecules and solids of environmental interest, bringing the reactivity of non-metals and metals to inorganic chemists, geochemists and environmental chemists from diverse fields. Understanding the principles of inorganic chemistry including chemical bonding, frontier molecular orbital theory, electron transfer processes, formation of (nano) particles, transition metal-ligand complexes, metal catalysis and more are essential to describe earth processes over time scales ranging from 1 nanosec to 1 Gigayr. Throughout the book, fundamental chemical principles are illustrated with relevant examples from geochemistry, environmental and marine chemistry, allowing students to better understand environmental and geochemical processes at the molecular level. Topics covered include: • Thermodynamics and kinetics of redox reactions • Atomic structure • Symmetry • Covalent bonding, and bonding in solids and nanoparticles • Frontier Molecular Orbital Theory • Acids and bases • Basics of transition metal chemistry including • Chemical reactivity of materials of geochemical and environmental interest Supplementary material is provided online, including PowerPoint slides, problem sets and solutions. Inorganic Chemistry for Geochemistry and Environmental Sciences is a rapid assimilation textbook for those studying and working in areas of geochemistry, inorganic chemistry and environmental chemistry, wishing to enhance their understanding of environmental processes from the molecular level to the global level.
Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, Second Edition, reviews the role of geochemistry in the environment and details state-of-the-art applications of these principles in the field, specifically in pollution and remediation situations. Chapters cover both philosophy and procedures, as well as applications, in an array of issues in environmental geochemistry including health problems related to environment pollution, waste disposal and data base management. This updated edition also includes illustrations of specific case histories of site characterization and remediation of brownfield sites. - Covers numerous global case studies allowing readers to see principles in action - Explores the environmental impacts on soils, water and air in terms of both inorganic and organic geochemistry - Written by a well-respected author team, with over 100 years of experience combined - Includes updated content on: urban geochemical mapping, chemical speciation, characterizing a brownsfield site and the relationship between heavy metal distributions and cancer mortality
Intended as an introduction to Geochemistry for Geology majors in their senior year or first year of graduate work. Designed to show students how to use chemical principles in solving geological problems, this text emphasizes a quantitative approach to problem solving and demonstrates how chemical principles control geologic processes in atomic and large-scale environments.
This book is intended to serve as a text for an introductory course in geochemistry for undergraduate/graduate students with at least an elementary–level background in earth sciences, chemistry, and mathematics. The text, containing 83 tables and 181 figures, covers a wide variety of topics — ranging from atomic structure to chemical and isotopic equilibria to modern biogeochemical cycles — which are divided into four interrelated parts: Crystal Chemistry; Chemical Reactions (and biochemical reactions involving bacteria); Isotope Geochemistry (radiogenic and stable isotopes); and The Earth Supersystem, which includes discussions pertinent to the evolution of the solid Earth, the atmosphere, and the hydrosphere. In keeping with the modern trend in the field of geochemistry, the book emphasizes computational techniques by developing appropriate mathematical relations, solving a variety of problems to illustrate application of the mathematical relations, and leaving a set of questions at the end of each chapter to be solved by students. However, so as not to interrupt the flow of the text, involved chemical concepts and mathematical derivations are separated in the form of boxes. Supplementary materials are packaged into ten appendixes that include a standard–state (298.15 K, 1 bar) thermodynamic data table and a listing of answers to selected chapter–end questions. Additional resources for this book can be found at: www.wiley.com/go/misra/geochemistry.
Water quality of pit lakes is one of the most critical environmental issues facing the global mining industry. As ore grades decrease and operators strive to improve efficiency, the number of active pit mines will continue to outpace their underground counterparts in the years ahead. How will these water resources be protected for future generations while the mining industry continues to meet society's growing demands for raw materials? The key to solving this dilemma is accurately predicting the water quality in advance of open pit mining. That's the purpose of Mine Pit Lakes. The third in a series of six handbooks by the Acid Drainage Technology Initiative--Metal Mining Sector (ADTI-MMS), this volume includes the latest thinking from dozens of internationally respected experts from Canada, Germany, Australia, and the United States. You'll learn both the theory and science of predicting pit lake water quality and get insights into the best practices of pit lake management. This book is an indispensable resource for mining professionals and environmental regulators who are considering new open pit mines or are developing monitoring programs or closure strategies for existing ones.