Principal Structures and Methods of Representation Theory

Principal Structures and Methods of Representation Theory

Author: Dmitriĭ Petrovich Zhelobenko

Publisher: American Mathematical Soc.

Published:

Total Pages: 456

ISBN-13: 9780821889671

DOWNLOAD EBOOK

The main topic of this book can be described as the theory of algebraic and topological structures admitting natural representations by operators in vector spaces. These structures include topological algebras, Lie algebras, topological groups, and Lie groups. The book is divided into three parts. Part I surveys general facts for beginners, including linear algebra and functional analysis. Part II considers associative algebras, Lie algebras, topological groups, and Lie groups,along with some aspects of ring theory and the theory of algebraic groups. The author provides a detailed account of classical results in related branches of mathematics, such as invariant integration and Lie's theory of connections between Lie groups and Lie algebras. Part III discusses semisimple Liealgebras and Lie groups, Banach algebras, and quantum groups. This is a useful text for a wide range of specialists, including graduate students and researchers working in mathematical physics and specialists interested in modern representation theory. It is suitable for independent study or supplementary reading. Also available from the AMS by this acclaimed author is Compact Lie Groups and Their Representations.


A Course in Finite Group Representation Theory

A Course in Finite Group Representation Theory

Author: Peter Webb

Publisher: Cambridge University Press

Published: 2016-08-19

Total Pages: 339

ISBN-13: 1107162394

DOWNLOAD EBOOK

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.


Introduction to Representation Theory

Introduction to Representation Theory

Author: Pavel I. Etingof

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 240

ISBN-13: 0821853511

DOWNLOAD EBOOK

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.


Algebras and Representation Theory

Algebras and Representation Theory

Author: Karin Erdmann

Publisher: Springer

Published: 2018-09-07

Total Pages: 304

ISBN-13: 3319919989

DOWNLOAD EBOOK

This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.


Representations of Semisimple Lie Algebras in the BGG Category O

Representations of Semisimple Lie Algebras in the BGG Category O

Author: James E. Humphreys

Publisher: American Mathematical Soc.

Published: 2021-07-14

Total Pages: 289

ISBN-13: 1470463261

DOWNLOAD EBOOK

This is the first textbook treatment of work leading to the landmark 1979 Kazhdan–Lusztig Conjecture on characters of simple highest weight modules for a semisimple Lie algebra g g over C C. The setting is the module category O O introduced by Bernstein–Gelfand–Gelfand, which includes all highest weight modules for g g such as Verma modules and finite dimensional simple modules. Analogues of this category have become influential in many areas of representation theory. Part I can be used as a text for independent study or for a mid-level one semester graduate course; it includes exercises and examples. The main prerequisite is familiarity with the structure theory of g g. Basic techniques in category O O such as BGG Reciprocity and Jantzen's translation functors are developed, culminating in an overview of the proof of the Kazhdan–Lusztig Conjecture (due to Beilinson–Bernstein and Brylinski–Kashiwara). The full proof however is beyond the scope of this book, requiring deep geometric methods: D D-modules and perverse sheaves on the flag variety. Part II introduces closely related topics important in current research: parabolic category O O, projective functors, tilting modules, twisting and completion functors, and Koszul duality theorem of Beilinson–Ginzburg–Soergel.


Semi-Simple Lie Algebras and Their Representations

Semi-Simple Lie Algebras and Their Representations

Author: Robert N. Cahn

Publisher: Courier Corporation

Published: 2014-06-10

Total Pages: 180

ISBN-13: 0486150313

DOWNLOAD EBOOK

Designed to acquaint students of particle physiME already familiar with SU(2) and SU(3) with techniques applicable to all simple Lie algebras, this text is especially suited to the study of grand unification theories. Author Robert N. Cahn, who is affiliated with the Lawrence Berkeley National Laboratory in Berkeley, California, has provided a new preface for this edition. Subjects include the killing form, the structure of simple Lie algebras and their representations, simple roots and the Cartan matrix, the classical Lie algebras, and the exceptional Lie algebras. Additional topiME include Casimir operators and Freudenthal's formula, the Weyl group, Weyl's dimension formula, reducing product representations, subalgebras, and branching rules. 1984 edition.


Representation Theory and Complex Geometry

Representation Theory and Complex Geometry

Author: Neil Chriss

Publisher: Birkhauser

Published: 1997

Total Pages: 495

ISBN-13: 0817637923

DOWNLOAD EBOOK

This volume provides an overview of modern advances in representation theory from a geometric standpoint. The techniques developed are quite general and can be applied to other areas such as quantum groups, affine Lie groups, and quantum field theory.


Methods of Noncommutative Geometry for Group C*-Algebras

Methods of Noncommutative Geometry for Group C*-Algebras

Author: Do Ngoc Diep

Publisher: CRC Press

Published: 1999-12-06

Total Pages: 366

ISBN-13: 9781584880196

DOWNLOAD EBOOK

The description of the structure of group C*-algebras is a difficult problem, but relevant to important new developments in mathematics, such as non-commutative geometry and quantum groups. Although a significant number of new methods and results have been obtained, until now they have not been available in book form. This volume provides an introduction to and presents research on the study of group C*-algebras, suitable for all levels of readers - from graduate students to professional researchers. The introduction provides the essential features of the methods used. In Part I, the author offers an elementary overview - using concrete examples-of using K-homology, BFD functors, and KK-functors to describe group C*-algebras. In Part II, he uses advanced ideas and methods from representation theory, differential geometry, and KK-theory, to explain two primary tools used to study group C*-algebras: multidimensional quantization and construction of the index of group C*-algebras through orbit methods. The structure of group C*-algebras is an important issue both from a theoretical viewpoint and in its applications in physics and mathematics. Armed with the background, tools, and research provided in Methods of Noncommutative Geometry for Group C*-Algebras, readers can continue this work and make significant contributions to perfecting the theory and solving this problem.