Written in the spirit of Liboff's acclaimed text on Quantum Mechanics, this introduction to group theory offers an exceptionally clear presentation with a good sense of what to explain, which examples are most appropriate, and when to give a counter-example.
This book is the first of a three-volume series written by the same author. It aims to deliver a comprehensive and self-contained account of the fundamentals of the physics of solids. In the presentation of the properties and experimentally observed phenomena together with the basic concepts and theoretical methods, it goes far beyond most classic texts. The essential features of various experimental techniques are also explained. The text provides material for upper-level undergraduate and graduate courses. It will also be a valuable reference for researchers in the field of condensed matter physics.
This book is by far the most comprehensive treatment of point and space groups, and their meaning and applications. Its completeness makes it especially useful as a text, since it gives the instructor the flexibility to best fit the class and goals. The instructor, not the author, decides what is in the course. And it is the prime book for reference, as material is much more likely to be found in it than in any other book; it also provides detailed guides to other sources. Much of what is taught is folklore, things everyone knows are true, but (almost?) no one knows why, or has seen proofs, justifications, rationales or explanations. (Why are there 14 Bravais lattices, and why these? Are the reasons geometrical, conventional or both? What determines the Wigner–Seitz cells? How do they affect the number of Bravais lattices? Why are symmetry groups relevant to molecules whose vibrations make them unsymmetrical? And so on). Here these analyses are given, interrelated, and in-depth. The understanding so obtained gives a strong foundation for application and extension. Assumptions and restrictions are not merely made explicit, but also emphasized. In order to provide so much information, details and examples, and ways of helping readers learn and understand, the book contains many topics found nowhere else, or only in obscure articles from the distant past. The treatment is (often completely) different from those elsewhere. At least in the explanations, and usually in many other ways, the book is completely new and fresh. It is designed to inform, educate and make the reader think. It strongly emphasizes understanding. The book can be used at many levels, by many different classes of readers — from those who merely want brief explanations (perhaps just of terminology), who just want to skim, to those who wish the most thorough understanding. Request Inspection Copy
Discusses the Structure and Properties of Materials and How These Materials Are Used in Diverse ApplicationsBuilding on undergraduate students' backgrounds in mathematics, science, and engineering, Introduction to the Physics and Chemistry of Materials provides the foundation needed for more advanced work in materials science. Ideal for a two-semes
As a self-study guide, course primer or teaching aid, Bor- chardt-Ott's Crystallography is the perfect textbook for students and teachers alike. In fact, it can be used by chemists, mineralogists, physicists and geologists. Based on the author's more than 20 years of teaching experience, the book has numerous line drawings designed especially for the text and a large number of exercises - with solutions - at the end of each chapter. The fourth edition of the original German text has been translated into English for an international readership. The heart of the book is firmly fixed in geometrical crystallography. It is from the concept of the space lattice that symmetry operations, Bravais lattices, space groups and point groups are all developed. Molecular symmetry and crystal formsare treated. Much emphasis is placed on the correspondence between point groups and space groups. The sections on crystal chemistry and X-ray diffraction are intended as an introduction to these fields.
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
X-ray crystallography provides a unique opportunity to study the arrangement of atoms in a molecule. This book's modern computer-graphics centered approach facilitates the extrapolation of these valuable observations. A unified treatment of crystal systems, the book explains how atoms are arranged in crystals using the metric matrix. Featuring t
This book provides a clear introduction to topics which are essential to students in a wide range of scientific disciplines but which are otherwise only covered in specialised and mathematically detailed texts. It shows how crystal structures may be built up from simple ideas of atomic packing and co-ordination, it develops the concepts of crystal symmetry, point and space groups by way of two dimensional examples of patterns and tilings, it explains the concept of the reciprocal lattice in simple terms and shows its importance in an understanding of light, X-ray and electron diffraction. Practical examples of the applications of these techniques are described and also the importance of diffraction in the performance of optical instruments. The book is also of value to the general reader since it shows, by biographical and historical references, how the subject has developed and thereby indicates some of the excitement of scientific discovery.
Alle mathematischen Verfahren, die man nach dem Diplom in Physik beherrschen sollte, sind in diesem Buch nachzulesen. Neben den üblichen Themen aus der Analysis - unendliche Reihen, Funktionen komplexer Variabler, Differenzialgleichungen und lineare Vektorräume - findet sich hier auch eine ausführliche Diskussion der Gruppentheorie, die man in modernen Lehrbüchern mit ähnlichem Themenumfang meist vergeblich sucht.
The purpose of this book is to explain why molecular structure can be determined by single-crystal diffraction of X rays. It is not an account of the practical procedural details, but rather an account of the underlying physical principles, and the kinds of experiments and methods of handling the experimental data that are used.