Primality Testing and Integer Factorization in Public-Key Cryptography

Primality Testing and Integer Factorization in Public-Key Cryptography

Author: Song Y. Yan

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 249

ISBN-13: 1475738161

DOWNLOAD EBOOK

Primality Testing and Integer Factorization in Public-Key Cryptography introduces various algorithms for primality testing and integer factorization, with their applications in public-key cryptography and information security. More specifically, this book explores basic concepts and results in number theory in Chapter 1. Chapter 2 discusses various algorithms for primality testing and prime number generation, with an emphasis on the Miller-Rabin probabilistic test, the Goldwasser-Kilian and Atkin-Morain elliptic curve tests, and the Agrawal-Kayal-Saxena deterministic test for primality. Chapter 3 introduces various algorithms, particularly the Elliptic Curve Method (ECM), the Quadratic Sieve (QS) and the Number Field Sieve (NFS) for integer factorization. This chapter also discusses some other computational problems that are related to factoring, such as the square root problem, the discrete logarithm problem and the quadratic residuosity problem.


Primality and Cryptography

Primality and Cryptography

Author: Evangelos Kranakis

Publisher: Wiley

Published: 1991-01-08

Total Pages: 278

ISBN-13: 9780471909347

DOWNLOAD EBOOK

A comprehensive account of recent algorithms developed in computational number theory and primality testing. Provides a general framework for the theoretical study of public key cryptography and pseudorandom generators. Unique in its approach, the book will be a valuable addition to computer literature.


Prime Numbers

Prime Numbers

Author: Richard Crandall

Publisher: Springer Science & Business Media

Published: 2006-04-07

Total Pages: 597

ISBN-13: 0387289798

DOWNLOAD EBOOK

Bridges the gap between theoretical and computational aspects of prime numbers Exercise sections are a goldmine of interesting examples, pointers to the literature and potential research projects Authors are well-known and highly-regarded in the field


Prime Numbers and Computer Methods for Factorization

Prime Numbers and Computer Methods for Factorization

Author: Hans Riesel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 481

ISBN-13: 1461202515

DOWNLOAD EBOOK

In the modern age of almost universal computer usage, practically every individual in a technologically developed society has routine access to the most up-to-date cryptographic technology that exists, the so-called RSA public-key cryptosystem. A major component of this system is the factorization of large numbers into their primes. Thus an ancient number-theory concept now plays a crucial role in communication among millions of people who may have little or no knowledge of even elementary mathematics. The independent structure of each chapter of the book makes it highly readable for a wide variety of mathematicians, students of applied number theory, and others interested in both study and research in number theory and cryptography.


An Introduction to Mathematical Cryptography

An Introduction to Mathematical Cryptography

Author: Jeffrey Hoffstein

Publisher: Springer

Published: 2014-09-11

Total Pages: 549

ISBN-13: 1493917110

DOWNLOAD EBOOK

This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.


A Course in Number Theory and Cryptography

A Course in Number Theory and Cryptography

Author: Neal Koblitz

Publisher: Springer Science & Business Media

Published: 2012-09-05

Total Pages: 245

ISBN-13: 1441985921

DOWNLOAD EBOOK

This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.


Mathematics of Public Key Cryptography

Mathematics of Public Key Cryptography

Author: Steven D. Galbraith

Publisher: Cambridge University Press

Published: 2012-03-15

Total Pages: 631

ISBN-13: 1107013925

DOWNLOAD EBOOK

This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.


Elementary Number Theory: Primes, Congruences, and Secrets

Elementary Number Theory: Primes, Congruences, and Secrets

Author: William Stein

Publisher: Springer Science & Business Media

Published: 2008-10-28

Total Pages: 173

ISBN-13: 0387855254

DOWNLOAD EBOOK

This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.