PRICAI 2006: Trends in Artificial Intelligence

PRICAI 2006: Trends in Artificial Intelligence

Author: Quiang Yang

Publisher: Springer

Published: 2008-02-20

Total Pages: 1291

ISBN-13: 3540366687

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006, held in Guilin, China in August 2006. The book presents 81 revised full papers and 87 revised short papers together with 3 keynote talks. The papers are organized in topical sections on intelligent agents, automated reasoning, machine learning and data mining, natural language processing and speech recognition, computer vision, perception and animation, and more.


Artificial Intelligence in Intelligent Systems

Artificial Intelligence in Intelligent Systems

Author: Radek Silhavy

Publisher: Springer Nature

Published: 2021-07-15

Total Pages: 779

ISBN-13: 3030774457

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the artificial intelligence in intelligent systems section of the 10th Computer Science Online Conference 2021 (CSOC 2021), held online in April 2021. Artificial intelligence in intelligent systems topics are presented in this book. Modern hybrid and bio-inspired algorithms and their application are discussed in selected papers.


Artificial Intelligence and Bioinspired Computational Methods

Artificial Intelligence and Bioinspired Computational Methods

Author: Radek Silhavy

Publisher: Springer Nature

Published: 2020-08-08

Total Pages: 655

ISBN-13: 3030519716

DOWNLOAD EBOOK

This book gathers the refereed proceedings of the Artificial Intelligence and Bioinspired Computational Methods Section of the 9th Computer Science On-line Conference 2020 (CSOC 2020), held on-line in April 2020. Artificial intelligence and bioinspired computational methods now represent crucial areas of computer science research. The topics presented here reflect the current discussion on cutting-edge hybrid and bioinspired algorithms and their applications.


Machine Learning Paradigms

Machine Learning Paradigms

Author: George A. Tsihrintzis

Publisher: Springer Nature

Published: 2020-07-23

Total Pages: 429

ISBN-13: 3030497240

DOWNLOAD EBOOK

At the dawn of the 4th Industrial Revolution, the field of Deep Learning (a sub-field of Artificial Intelligence and Machine Learning) is growing continuously and rapidly, developing both theoretically and towards applications in increasingly many and diverse other disciplines. The book at hand aims at exposing its reader to some of the most significant recent advances in deep learning-based technological applications and consists of an editorial note and an additional fifteen (15) chapters. All chapters in the book were invited from authors who work in the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into six parts, namely (1) Deep Learning in Sensing, (2) Deep Learning in Social Media and IOT, (3) Deep Learning in the Medical Field, (4) Deep Learning in Systems Control, (5) Deep Learning in Feature Vector Processing, and (6) Evaluation of Algorithm Performance. This research book is directed towards professors, researchers, scientists, engineers and students in computer science-related disciplines. It is also directed towards readers who come from other disciplines and are interested in becoming versed in some of the most recent deep learning-based technological applications. An extensive list of bibliographic references at the end of each chapter guides the readers to probe deeper into their application areas of interest.


New Perspectives on Games and Interaction

New Perspectives on Games and Interaction

Author: Krzysztof R. Apt

Publisher: Amsterdam University Press

Published: 2008

Total Pages: 331

ISBN-13: 9089640576

DOWNLOAD EBOOK

This volume is a collection of papers presented at the 2007 colloquium on new perspectives on games and interaction at the Royal Dutch Academy of Sciences in Amsterdam.


Swarm Intelligence Algorithms (Two Volume Set)

Swarm Intelligence Algorithms (Two Volume Set)

Author: Adam Slowik

Publisher: CRC Press

Published: 2021-01-26

Total Pages: 379

ISBN-13: 1000168727

DOWNLOAD EBOOK

Swarm intelligence algorithms are a form of nature-based optimization algorithms. Their main inspiration is the cooperative behavior of animals within specific communities. This can be described as simple behaviors of individuals along with the mechanisms for sharing knowledge between them, resulting in the complex behavior of the entire community. Examples of such behavior can be found in ant colonies, bee swarms, schools of fish or bird flocks. Swarm intelligence algorithms are used to solve difficult optimization problems for which there are no exact solving methods or the use of such methods is impossible, e.g. due to unacceptable computational time. This set comprises two volumes: Swarm Intelligence Algorithms: A Tutorial and Swarm Intelligence Algorithms: Modifications and Applications. The first volume thoroughly presents the basics of 24 algorithms selected from the entire family of swarm intelligence algorithms. It contains a detailed explanation of how each algorithm works, along with relevant program codes in Matlab and the C ++ programming language, as well as numerical examples illustrating step-by-step how individual algorithms work. The second volume describes selected modifications of these algorithms and presents their practical applications. This book presents 24 swarm algorithms together with their modifications and practical applications. Each chapter is devoted to one algorithm. It contains a short description along with a pseudo-code showing the various stages of its operation. In addition, each chapter contains a description of selected modifications of the algorithm and shows how it can be used to solve a selected practical problem.


Advances in Engineering Design

Advances in Engineering Design

Author: Pawan Kumar Rakesh

Publisher: Springer Nature

Published: 2021-02-04

Total Pages: 557

ISBN-13: 9813340185

DOWNLOAD EBOOK

This book presents the selected peer-reviewed proceedings of the International Conference on Innovative Engineering Design (ICOIED 2020). The contents provide a multidisciplinary approach for the development of innovative product design and their benefits for the society. The book presents latest advances in various fields like design process, service development, micro/nano technology, sensors and MEMS, and sustainability in engineering design. This book can be useful for students, researchers, and professionals interested in innovative product/process design and development.


Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing

Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing

Author: Sujata Dash

Publisher: Springer Nature

Published: 2021-11-05

Total Pages: 443

ISBN-13: 3030756572

DOWNLOAD EBOOK

This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. Now, the exemplar model for soft computing is human brain. The use of various techniques of soft computing is nowadays successfully implemented in many domestic, commercial, and industrial applications due to the low-cost and very high-performance digital processors and also the decline price of the memory chips. This is the main reason behind the wider expansion of soft computing techniques and its application areas. These computing methods also play a significant role in the design and optimization in diverse engineering disciplines. With the influence and the development of the Internet of things (IoT) concept, the need for using soft computing techniques has become more significant than ever. In general, soft computing methods are closely similar to biological processes than traditional techniques, which are mostly based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft computing techniques are anticipated to complement each other. The aim of these techniques is to accept imprecision, uncertainties, and approximations to get a rapid solution. However, recent advancements in representation soft computing algorithms (fuzzy logic,evolutionary computation, machine learning, and probabilistic reasoning) generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Soft computing-based algorithms have demonstrated great performance to a variety of areas including multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, biomedical and health informatics, etc. Soft computing approaches such as genetic programming (GP), support vector machine–firefly algorithm (SVM-FFA), artificial neural network (ANN), and support vector machine–wavelet (SVM–Wavelet) have emerged as powerful computational models. These have also shown significant success in dealing with massive data analysis for large number of applications. All the researchers and practitioners will be highly benefited those who are working in field of computer engineering, medicine, biology application, signal processing, and mechanical engineering. This book is a good collection of state-of-the-art approaches for soft computing-based applications to various engineering fields. It is very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health. This book is very useful because there is no book in the market which provides a good collection of state-of-the-art methods of soft computing-based models for multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, and biomedical and health informatics.


Learning from Imbalanced Data Sets

Learning from Imbalanced Data Sets

Author: Alberto Fernández

Publisher: Springer

Published: 2018-10-22

Total Pages: 385

ISBN-13: 3319980742

DOWNLOAD EBOOK

This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way. This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches. Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided. This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.


Frontier Applications of Nature Inspired Computation

Frontier Applications of Nature Inspired Computation

Author: Mahdi Khosravy

Publisher: Springer Nature

Published: 2020-03-11

Total Pages: 402

ISBN-13: 9811521336

DOWNLOAD EBOOK

This book addresses the frontier advances in the theory and application of nature-inspired optimization techniques, including solving the quadratic assignment problem, prediction in nature-inspired dynamic optimization, the lion algorithm and its applications, optimizing the operation scheduling of microgrids, PID controllers for two-legged robots, optimizing crane operating times, planning electrical energy distribution systems, automatic design and evaluation of classification pipelines, and optimizing wind-energy power generation plants. The book also presents a variety of nature-inspired methods and illustrates methods of adapting these to said applications. Nature-inspired computation, developed by mimicking natural phenomena, makes a significant contribution toward the solution of non-convex optimization problems that normal mathematical optimizers fail to solve. As such, a wide range of nature-inspired computing approaches has been used in multidisciplinary engineering applications. Written by researchers and developers from a variety of fields, this book presents the latest findings, novel techniques and pioneering applications.