Sustainable Energy from Salinity Gradients

Sustainable Energy from Salinity Gradients

Author: Andrea Cipollina

Publisher: Woodhead Publishing

Published: 2016-03-01

Total Pages: 363

ISBN-13: 0081003234

DOWNLOAD EBOOK

Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Efficient extraction of this energy is not straightforward, however. Sustainable Energy from Salinity Gradients provides a comprehensive review of resources, technologies and applications in this area of fast-growing interest. Key technologies covered include pressure retarded osmosis, reverse electrodialysis and accumulator mixing. Environmental and economic aspects are also considered, together with the possible synergies between desalination and salinity gradient energy technologies. Sustainable Energy from Salinity Gradients is an essential text for R&D professionals in the energy & water industry interested in salinity gradient power and researchers in academia from post-graduate level upwards. For more than ten years the Editors have been sharing substantial research activities in the fields of renewable energy and desalination, successfully participating to a number of European Union research projects and contributing to the relevant scientific literature with more than 100 papers and 2 books on Desalination technologies and their coupling with Renewable Energy. They are intensely working in the field of Salinity Gradient Power, carrying out research with specific focus o.n open-loop and closed-loop reverse electrodialysis and pressure retarded osmosis. Covers applications of pressure retarded osmosis, reverse electrodialysis, and capacitive mixing for salinity gradient power in one convenient volume Presents the environmental aspects and economics of salinity gradient energy Explores possible synergies between desalination and salinity gradient energy


Osmosis Engineering

Osmosis Engineering

Author: Nidal Hilal

Publisher: Elsevier

Published: 2021-04-23

Total Pages: 389

ISBN-13: 0128231882

DOWNLOAD EBOOK

Osmosis Engineering provides a comprehensive overview of the state-of-the-art surrounding osmosis-based research and industrial applications. The book covers the underpinning theories, technology developments and commercial applications. Sections discuss innovative and advanced membranes and modules for osmosis separation processes (e.g., reverse osmosis, forward osmosis, pressure retarded osmosis, osmotic membrane distillation), different application of these osmosis separation processes for energy and water separation, such as the treatment of radioactive waste, oily wastewater and heavy metal removal, draw solutions, pretreatment technologies, fouling effects, the use of renewable energy driven osmotic processes, computational, environmental and economic studies, and more. Covers state-of-the-art osmotic engineering technologies and applications Presents multidisciplinary topics in engineered osmosis, including both fundamental and applied EO concepts Includes major challenges such as fouling mitigation, membrane development, pre-treatment and energy usage


Osmotically Driven Membrane Processes

Osmotically Driven Membrane Processes

Author: Hongbo Du

Publisher: BoD – Books on Demand

Published: 2018-03-28

Total Pages: 283

ISBN-13: 9535139215

DOWNLOAD EBOOK

Osmotically driven membrane processes (ODMPs) including forward osmosis (FO) and pressure-retarded osmosis (PRO) have attracted increasing attention in fields such as water treatment, desalination, power generation, and life science. In contrast to pressure-driven membrane processes, e.g., reverse osmosis, which typically employs applied high pressure as driving force, ODMPs take advantages of naturally generated osmotic pressure as the sole source of driving force. In light of this, ODMPs possess many advantages over pressure-driven membrane processes. The advantages include low energy consumption, ease of equipment maintenance, low capital investment, high salt rejection, and high water flux. In the past decade, over 300 academic papers on ODMPs have been published in a variety of application fields. The number of such publications is still rapidly growing. The ODMPs' approach, fabrications, recent development and applications in wastewater treatment, power generation, seawater desalination, and gas absorption are presented in this book.


Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation

Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation

Author: Sarper Sarp

Publisher: Elsevier

Published: 2018-07-20

Total Pages: 0

ISBN-13: 9780444639615

DOWNLOAD EBOOK

Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation focuses on the various types of membrane- based salinity gradient processes that can be applied for desalination. Topics cover salinity gradient processes for desalination, such as Forward Osmosis (FO) and Pressure Retarded Osmosis (PRO), with chapters selected exclusively from a number of world-leading experts in various disciplines and from different continents. Sections include discussions on the theoretical and fundamental approaches to salinity gradient processes, various types of membrane materials and development, i.e., flat sheet and hollow fiber, various salinity water sources for an economically feasible process, and large-scale applications. Finally, the book focuses on economically feasible process optimization when both operational and capital costs are considered.


Membrane Technology for Osmotic Power Generation by Pressure Retarded Osmosis

Membrane Technology for Osmotic Power Generation by Pressure Retarded Osmosis

Author: Tai-Shung Chung

Publisher: CRC Press

Published: 2020-02-24

Total Pages: 347

ISBN-13: 1000027376

DOWNLOAD EBOOK

Osmotic energy can be effectively harvested through pressure retarded osmosis (PRO) which is the most widely investigated technology due to its greater efficiency and higher power density output and effective membranes are the heart of the PRO technology. This book will cover a broad range of topics, including PRO membranes, fouling, module fabrication, process design, process operation and maintenance. It summarizes the progress in PRO researches in the last decade, and points out the directions for future R&D and commercialization of PRO. It will be of great interest to membrane researcher, company and operators to understand and get insights into the state-of-the-art PRO technologies.


Membrane Contactor Technology

Membrane Contactor Technology

Author: Mohammad Younas

Publisher: John Wiley & Sons

Published: 2022-04-18

Total Pages: 372

ISBN-13: 3527348611

DOWNLOAD EBOOK

An eye-opening exploration of membrane contactors from a group of industry leaders In Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation, and Carbon Capture, an expert team of researchers delivers an up-to-date and insightful explanation of membrane contactor technology, including transport phenomena, design aspects, and diverse process applications. The book also includes explorations of membrane synthesis, process, and module design, as well as rarely discussed process modeling and simulation techniques. The authors discuss the technical and economic aspects of this increasingly important technology and examine the geometry, flow, energy and mass transport, and design aspects of membrane contactor modules. They also cover a wide range of application opportunities for this technology, from the materials sciences to process engineering. Membrane Contactor Technology also includes: A thorough introduction to the membrane contactor extraction process, including dispersion-free membrane extraction processes and supported liquid membrane processes Comprehensive explorations of membrane transport theory, including discussions of diffusional mass and heat transfer modeling, as well as numerical modeling In-depth examinations of module configuration and geometry, including design and flow configuration Practical discussions of modes or operation, including membrane distillation, osmotic evaporation, and forward osmosis Perfect for process engineers, biotechnologists, water chemists, and membrane scientists, Membrane Contactor Technology also belongs in the libraries of chemical engineers, polymer chemists, and chemists working in the environmental industry.


Pressure Retarded Osmosis

Pressure Retarded Osmosis

Author: Khaled Touati

Publisher: Academic Press

Published: 2017-05-16

Total Pages: 190

ISBN-13: 012812315X

DOWNLOAD EBOOK

Pressure Retarded Osmosis: Renewable Energy Generation and Recovery offers the first comprehensive resource on this method of generating renewable energy. Dr. Khaled Touati and the team of editors combine their expertise with contributions from other leaders in the field to create this well-rounded resource, which discusses and analyses this novel method of creating a controllable renewable energy. The promises of the PRO technique are first clearly presented and explained, and the authors then provide a comprehensive analysis of the issues that remain such as Concentration Polarization, Membrane Deformation, and Reverse Salt Diffusion. Possible solutions to these issues which often restrict industrial implementation are then discussed to mitigate these detrimental effects, and there is also an emphasis on the recovery of energy from desalination processes using PRO, which is able to reduce energy consumption and make it more economically and environmentally efficient. Combines research with experience to deliver a complete resource on Pressure Retarded Osmosis Discusses all areas of PRO in detail Offers solutions to problems commonly experienced and summarizes each method with a clear and concise conclusion Includes case studies from the Great Salt Lake (U.S.A) and Dead Sea (Asia), as well as other rivers from America, Europe, and Asia


IRC-SET 2020

IRC-SET 2020

Author: Huaqun Guo

Publisher: Springer Nature

Published: 2021-05-11

Total Pages: 787

ISBN-13: 9811594724

DOWNLOAD EBOOK

This book highlights leading-edge research in multi-disciplinary areas in Physics, Engineering, Medicine, and Health care, from the 6th IRC Conference on Science, Engineering and Technology (IRC-SET 2020) held in July 2020 at Singapore. The papers were shortlisted after extensive rounds of reviews by a panel of esteemed individuals who are pioneers in their domains. The book also contains excerpts of the speeches by eminent personalities who graced the occasion, thereby providing written documentation of the event.


Membrane Technology and Applications

Membrane Technology and Applications

Author: Richard W. Baker

Publisher: John Wiley & Sons

Published: 2004-05-31

Total Pages: 556

ISBN-13: 9780470854457

DOWNLOAD EBOOK

Table of Contents Preface Acknowledgments for the first edition Acknowledgments for the second edition 1 Overview of Membrane Science and Technology 1 2 Membrane Transport Theory 15 3 Membranes and Modules 89 4 Concentration Polarization 161 5 Reverse Osmosis 191 6 Ultrafiltration 237 7 Microfiltration 275 8 Gas Separation 301 9 Pervaporation 355 10 Ion Exchange Membrane Processes - Electrodialysis 393 11 Carrier Facilitated Transport 425 12 Medical Applications of Membranes 465 13 Other Membrane Processes 491 Appendix 523 Index 535.


Desalination Engineering: Planning and Design

Desalination Engineering: Planning and Design

Author: Nikolay Voutchkov

Publisher: McGraw Hill Professional

Published: 2012-12-18

Total Pages: 674

ISBN-13: 0071777156

DOWNLOAD EBOOK

An in-depth guide to reverse osmosis desalination This Water Environment Federation and WateReuse Association publication provides comprehensive information on the planning and engineering of brackish and seawater desalination projects for municipal water supplies. After a brief overview of widely used desalination technologies, Desalination Engineering focuses on reverse osmosis desalination. The book discusses basic principles, planning and environmental review of projects, design and selection of key desalination plant components, desalinated water posttreatment, and concentrate management. Guidelines on sizing and cost estimation of desalination plant facilities are also included in this practical resource. COVERAGE INCLUDES: Source water quality characterization Fundamentals of reverse osmosis desalination Planning considerations Environmental review and permitting Intakes for source water collection Intake pump stations Source water screening and conditioning Sand removal, sedimentation, and dissolved air flotation Pretreatment by granular media filtration Pretreatment by membrane filtration Comparison of granular media and membrane pretreatment Reverse osmosis separation Post-treatment of desalinated water Desalination plant discharge management Desalination project cost estimates