High c oxide superconductors such as Bi(Pb)-Sr-Ca-Cu-O (BSCCO) and Y-Ba-Cu-O (YBCO) systems are usually fabricated by sintering given mixtures of raw materials. Generally, sintering processing takes a longer heating time and the products are mechanically low strength and cannot be formed into complex shapes such as a coil, a curved fine tube or a fine rod. Another way to produce the ceramics is a glass-ceramic process in which the glasses prepared by melt-quenching are reheated for crystallization. A given mixture of raw materials in BSCCO is easily melted and quenched to form a given shape of glass, while that in YBCO is not glassified.This invaluable book has been written by authors from five countries. It presents a unique way to fabricate superconducting ceramics in BSCCO by glass-ceramic processing.
Even before it was identified as a science and given a name, nanotechnology was the province of the most innovative inventors. In medieval times, craftsmen, ingeniously employing nanometer-sized gold particles, created the enchanting red hues found in the gold ruby glass of cathedral windows. Today, nanomaterials are being just as creatively used to improve old products, as well as usher in new ones. From tires to CRTs to sunscreens, nanomaterials are becoming a part of every industry. The Nanomaterials Handbook provides a comprehensive overview of the current state of nanomaterials. Employing terminology familiar to materials scientists and engineers, it provides an introduction that delves into the unique nature of nanomaterials. Looking at the quantum effects that come into play and other characteristics realized at the nano level, it explains how the properties displayed by nanomaterials can differ from those displayed by single crystals and conventional microstructured, monolithic, or composite materials. The introduction is followed by an in-depth investigation of carbon-based nanomaterials, which are as important to nanotechnology as silicon is to electronics. However, it goes beyond the usual discussion of nanotubes and nanofibers to consider graphite whiskers, cones and polyhedral crystals, and nanocrystalline diamonds. It also provides significant new information with regard to nanostructured semiconductors, ceramics, metals, biomaterials, and polymers, as well as nanotechnology’s application in drug delivery systems, bioimplants, and field-emission displays. The Nanomaterials Handbook is edited by world-renowned nanomaterials scientist Yury Gogotsi, who has recruited his fellow-pioneers from academia, national laboratories, and industry, to provide coverage of the latest material developments in America, Asia, Europe, and Australia.
Sol-Gel processing methods, first used historically for decorative and constructional materials, were extensively developed in the last century for applications such as glasses, ceramics, catalysts, coatings, composites and fibres. Today they are reaching their full potential, enabling the preparation of new generations of advanced materials not easily accessible by other methods yet using mild, low-energy conditions. The topic is therefore increasingly included in advanced undergraduate, MSc and PhD programmes in the areas of chemistry, physics and materials science. This concise introductory text, written at the advanced undergraduate/first-year postgraduate level, is also suitable as an introduction to the development, mechanisms, chemistry, characterisation methods and applications of the technique. It provides readers with an extensive yet concise grounding in the theory of each area of the subject and details the real and potential applications and the future prospects of sol-gel chemistry.