Preparation and Properties of 2D Materials

Preparation and Properties of 2D Materials

Author: Byungjin Cho

Publisher: MDPI

Published: 2020-12-10

Total Pages: 142

ISBN-13: 3039362585

DOWNLOAD EBOOK

Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials


Two-dimensional Materials

Two-dimensional Materials

Author: Pramoda Kumar Nayak

Publisher: BoD – Books on Demand

Published: 2016-08-31

Total Pages: 282

ISBN-13: 9535125540

DOWNLOAD EBOOK

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.


Advanced 2D Materials

Advanced 2D Materials

Author: Ashutosh Tiwari

Publisher: John Wiley & Sons

Published: 2016-07-12

Total Pages: 544

ISBN-13: 1119242800

DOWNLOAD EBOOK

This book brings together innovative methodologies and strategies adopted in the research and developments of Advanced 2D Materials. Well-known worldwide researchers deliberate subjects on (1) Synthesis, characterizations, modeling and properties, (2) State-of-the-art design and (3) innovative uses of 2D materials including: Two-dimensional layered gallium selenide Synthesis of 2D boron nitride nanosheets The effects of substrates on 2-D crystals Electrical conductivity and reflectivity of models of some 2D materials Graphene derivatives in semicrystalline polymer composites Graphene oxide based multifunctional composites Covalent and non-covalent polymer grafting of graphene oxide Graphene-semiconductor hybrid photocatalysts for solar fuels Graphene based sensors Graphene composites from bench to clinic Photocatalytic ZnO-graphene hybrids Hydroxyapatite-graphene bioceramics in orthopaedic applications


2D Materials

2D Materials

Author: Chatchawal Wongchoosuk

Publisher: BoD – Books on Demand

Published: 2019-10-09

Total Pages: 94

ISBN-13: 1839622628

DOWNLOAD EBOOK

Two-dimensional (2D) materials have attracted a great deal of attention in recent years due to their potential applications in gas/chemical sensors, healthcare monitoring, biomedicine, electronic skin, wearable sensing technology and advanced electronic devices. Graphene is one of today's most popular 2D nanomaterials alongside boron nitrides, molybdenum disulfide, black phosphorus and metal oxide nanosheets, all of which open up new opportunities for future devices. This book provides insights into models and theoretical backgrounds, important properties, characterizations and applications of 2D materials, including graphene, silicon nitride, aluminum nitride, ZnO thin film, phosphorene and molybdenum disulfide.


2D Monoelemental Materials (Xenes) and Related Technologies

2D Monoelemental Materials (Xenes) and Related Technologies

Author: Zongyu Huang

Publisher: CRC Press

Published: 2022-04-19

Total Pages: 166

ISBN-13: 1000562840

DOWNLOAD EBOOK

Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.


2D Nanoscale Heterostructured Materials

2D Nanoscale Heterostructured Materials

Author: Satyabrata Jit

Publisher: Elsevier

Published: 2020-05-09

Total Pages: 285

ISBN-13: 0128176792

DOWNLOAD EBOOK

2D Nanoscale Heterostructured Materials: Synthesis, Properties, and Applications assesses the current status and future prospects for 2D materials other than graphene (e.g., BN nanosheets, MoS2, NbSe2, WS2, etc.) that have already been contemplated for both low-end and high-end technological applications. The book offers an overview of the different synthesis techniques for 2D materials and their heterostructures, with a detailed explanation of the many potential future applications. It provides an informed overview and fundamentals properties related to the 2D Transition metal dichalcogenide materials and their heterostructures. The book helps researchers to understand the progress of this field and points the way to future research in this area. - Explores synthesis techniques of newly evolved 2D materials and their heterostructures with controlled properties - Offers detailed analysis of the fundamental properties (via various experimental process and simulations techniques) of 2D heterostructures materials - Discusses the applications of 2D heterostructured materials in various high-performance devices


Photocatalysis Using 2D Nanomaterials

Photocatalysis Using 2D Nanomaterials

Author: Yufei Zhao

Publisher: Royal Society of Chemistry

Published: 2022-02-07

Total Pages: 319

ISBN-13: 1839164638

DOWNLOAD EBOOK

Two-dimensional (2D) materials for photocatalytic applications have attracted attention in recent years due to their unique thickness-dependent physiochemical properties. 2D materials offer enhanced functionality over traditional three-dimensional (3D) photocatalysts due to modified chemical composition and electronic structures, as well as abundant surface active sites. This book reviews the applications of 2D-related nano-materials in solar-driven catalysis, providing an up-to-date introduction to the design and use of 2D-related photo(electro)catalysts. This includes not only application areas such as fine chemicals synthesis, water splitting, CO2 reduction, and N2 fixation, but also catalyst design and preparation. Some typical 2D and 2D-related materials (such as layered double hydroxides (LDHs), layered metal oxides, transition metal dichalcogenide (TMDs), metal–organic frameworks (MOFs), graphene, g-C3N4, etc.) are classified, and relationships between structure and property are demonstrated, with emphasis on how to improve 2D-related materials performance for practical applications. While the focus of this book will primarily be on experimental studies, computational results will serve as a necessary reference. With chapters written by expert researchers in their fields, Photocatalysis Using 2D Nanomaterials will provide advanced undergraduates, postgraduates and other researchers convenient introductions to these topics.


2D Metal Carbides and Nitrides (MXenes)

2D Metal Carbides and Nitrides (MXenes)

Author: Babak Anasori

Publisher: Springer Nature

Published: 2019-10-30

Total Pages: 530

ISBN-13: 3030190269

DOWNLOAD EBOOK

This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.


Fundamentals and Sensing Applications of 2D Materials

Fundamentals and Sensing Applications of 2D Materials

Author: Chandra Sekhar Rout

Publisher: Woodhead Publishing

Published: 2019-06-15

Total Pages: 514

ISBN-13: 0081025785

DOWNLOAD EBOOK

Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. - Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system - Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more - Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials


Two Dimensional Transition Metal Dichalcogenides

Two Dimensional Transition Metal Dichalcogenides

Author: Narayanasamy Sabari Arul

Publisher: Springer

Published: 2019-07-30

Total Pages: 361

ISBN-13: 9811390452

DOWNLOAD EBOOK

This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.