Nowadays, decision problems are pervaded with incomplete knowledge, i.e., imprecision and/or uncertain information, both in the problem description and in the preferential information. In this volume leading scientists in the field address various theoretical and practical aspects related to the handling of this incompleteness. The problems discussed are taken from multi-objective linear programming, rationality considerations in preference modelling, non-probabilistic utility theory, data fusion, group decision making and multicriteria decision aid. The book is oriented towards researchers, graduate and postgraduate students in decision analysis, fuzzy sets and fuzzy logic, and operations research/management science.
This book constitutes the refereed proceedings of the Third International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2006, held in Tarragona, Spain, in April 2006. The 31 revised full papers presented together with 4 invited lectures were thoroughly reviewed and selected from 97 submissions. The papers are devoted to theory and tools for modeling decisions, as well as applications that encompass decision making processes and information fusion techniques.
This book constitutes the refereed proceedings of the Third International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2006, held in federation with the Second International Conference on Natural Computation ICNC 2006. The book presents 115 revised full papers and 50 revised short papers. Coverage includes neural computation, quantum computation, evolutionary computation, DNA computation, fuzzy computation, granular computation, artificial life, innovative applications to knowledge discovery, finance, operations research, and more.
This book presents a collection of essays written by leading researchers to honor Roman Słowiński’s major scholarly interests and contributions. He is well-known for conducting extensive research on methodologies and techniques for intelligent decision support, where he combines operational research and artificial intelligence. The book reconstructs his main contributions, presents cutting-edge research and provides an outlook on the most promising and advanced domains of computer science and multiple criteria decision aiding. The respective chapters cover a wide range of related research areas, including decision sciences, ordinal data mining, preference learning and multiple criteria decision aiding, modeling of uncertainty and imprecision in decision problems, rough set theory, fuzzy set theory, multi-objective optimization, project scheduling and decision support applications. As such, the book will appeal to researchers and scholars in related fields.
This book provides a systematic introduction to linguistic aggregation operators, linguistic preference relations, and various models and approaches to multi-attribute decision making with linguistic information. Offers practical examples, tables and figures.
Intelligent Information Technology (iiT) encompasses the theories and ap plications of artificial intelligence, statistical pattern recognition, learning theory, data warehousing, data mining and knowledge discovery, Grid com puting, and autonomous agents and multi-agent systems in the context of today's as well as future IT, such as Electronic Commerce (EC), Business Intelligence (BI), Social Intelligence (SI), Web Intelligence (WI), Knowledge Grid (KG), and Knowledge Community (KC), among others. The multi-author monograph presents the current state of the research and development in intelligent technologies for information analysis, in par ticular, advances in agents, data mining, and learning theory, from both the oretical and application aspects. It investigates the future of information technology (IT) from a new intelligent IT (iiT) perspective, and highlights major iiT-related topics by structuring an introductory chapter and 22 sur vey/research chapters into 5 parts: (1) emerging data mining technology, (2) data mining for Web intelligence, (3) emerging agent technology, ( 4) emerging soft computing technology, and (5) statistical learning theory. Each chapter includes the original work of the author(s) as well as a comprehensive survey related to the chapter's topic. This book will become a valuable source of reference for R&D profession als active in advanced intelligent information technologies. Students as well as IT professionals and ambitious practitioners concerned with advanced in telligent information technologies will appreciate the book as a useful text enhanced by numerous illustrations and examples.
This book constitutes the conference proceedings of the 7th International Conference on Algorithmic Decision Theory, ADT 2021, held in Toulouse, France, in November 2021. The 27 full papers presented were carefully selected from 58 submissions. The papers focus on algorithmic decision theory broadly defined, seeking to bring together researchers and practitioners coming from diverse areas of computer science, economics and operations research in order to improve the theory and practice of modern decision support.
This volume contains the papers presented at ADT 2009, the first International Conference on Algorithmic Decision Theory. The conference was held in San Servolo, a small island of the Venice lagoon, during October 20-23, 2009. The program of the conference included oral presentations, posters, invited talks, and tutorials. The conference received 65 submissions of which 39 papers were accepted (9 papers were posters). The topics of these papers range from computational social choice preference modeling, from uncertainty to preference learning, from multi-criteria decision making to game theory.
This book offers an in-depth and comprehensive introduction to the priority methods of intuitionistic preference relations, the consistency and consensus improving procedures for intuitionistic preference relations, the approaches to group decision making based on intuitionistic preference relations, the approaches and models for interactive decision making with intuitionistic fuzzy information, and the extended results in interval-valued intuitionistic fuzzy environments.
Software is an essential enabler for science and the new economy. It creates new markets and directions for a more reliable, flexible and robust society and empowers the exploration of our world in ever more depth, but it often falls short of our expectations. Current software methodologies, tools, and techniques are still neither robust nor reliable enough for the constantly evolving market, and many promising approaches have so far failed to deliver the solutions required. This book presents the keynote ‘Engineering Cyber-Physical Systems’ and 64 peer-reviewed papers from the 16th International Conference on New Trends in Intelligent Software Methodology Tools, and Techniques, (SoMeT_17), held in Kitakyushu, Japan, in September 2017, which brought together researchers and practitioners to share original research results and practical development experience in software science and related new technologies. The aim of the SoMeT conferences is to capture the essence of the new state-of-the-art in software science and its supporting technology and to identify the challenges such technology will have to master. The book explores new trends and theories which illuminate the direction of developments in this field, and will be of interest to anyone whose work involves software science and its integration into tomorrow’s global information society.