This book focuses on applications of social network analysis in predictive policing. Data science is used to identify potential criminal activity by analyzing the relationships between offenders to fully understand criminal collaboration patterns. Co-offending networks—networks of offenders who have committed crimes together—have long been recognized by law enforcement and intelligence agencies as a major factor in the design of crime prevention and intervention strategies. Despite the importance of co-offending network analysis for public safety, computational methods for analyzing large-scale criminal networks are rather premature. This book extensively and systematically studies co-offending network analysis as effective tool for predictive policing. The formal representation of criminological concepts presented here allow computer scientists to think about algorithmic and computational solutions to problems long discussed in the criminology literature. For each of the studied problems, we start with well-founded concepts and theories in criminology, then propose a computational method and finally provide a thorough experimental evaluation, along with a discussion of the results. In this way, the reader will be able to study the complete process of solving real-world multidisciplinary problems.
Can behaviour on social media predict future purchase patterns? Can what we click on social media foresee which political party will we vote for? Can the information we share on our wall foretell the next series I might want to watch? Can the likes on Instagram and Facebook predict the time one will spend on digital platforms in the next hour? The answer is no longer science fiction. It points to the ability of mainstream social media platforms such as Facebook and Twitter to be able to deliver specialised advertising services to highly targeted audience segments controlled by the billions of devices that flood our daily lives. At the same time, it highlights a more relevant problem: can social media guide, suggest or impose a certain behaviour or thought? Everything seems to indicate that they can do it. Predictive Technology in Social Media comprises 10 essays that reflect on the power of the predictive technology of social media in culture, entertainment, marketing, economics and politics. It shows, from a humanistic and critical perspective, the predictive possibilities of social media platforms, as well as the risks this entails for cultural plurality, everyday consumption, the monopolistic concentration of the economy and attention, and democracy. The text is an invitation to think, as citizens, about the unbridled power we have ceded to digital platforms. A new voice to warn about the greatest concentration of communicative power ever seen in the history of humanity.
Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention. It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak. Examine fraud patterns in historical data Utilize labeled, unlabeled, and networked data Detect fraud before the damage cascades Reduce losses, increase recovery, and tighten security The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.
An NPR Best Book of the Year Written during the height of the 1970s Italian domestic terror, a cult novel, with distinct echoes of Lovecraft and Borges, makes its English-language debut. In the spare wing of a church-run sanatorium, some zealous youths create "the Library," a space where lonely citizens can read one another’s personal diaries and connect with like-minded souls in "dialogues across the ether." But when their scribblings devolve into the ugliest confessions of the macabre, the Library’s users learn too late that a malicious force has consumed their privacy and their sanity. As the city of Turin suffers a twenty-day "phenomenon of collective psychosis" culminating in nightly massacres that hundreds of witnesses cannot explain, the Library is shut down and erased from history. That is, until a lonely salaryman decides to investigate these mysterious events, which the citizenry of Turin fear to mention. Inevitably drawn into the city’s occult netherworld, he unearths the stuff of modern nightmares: what’s shared can never be unshared. An allegory inspired by the grisly neo-fascist campaigns of its day, The Twenty Days of Turin has enjoyed a fervent cult following in Italy for forty years. Now, in a fretful new age of "lone-wolf" terrorism fueled by social media, we can find uncanny resonances in Giorgio De Maria’s vision of mass fear: a mute, palpitating dread that seeps into every moment of daily existence. With its stunning anticipation of the Internet—and the apocalyptic repercussions of oversharing—this bleak, prescient story is more disturbingly pertinent than ever. Brilliantly translated into English for the first time by Ramon Glazov, The Twenty Days of Turin establishes De Maria’s place among the literary ranks of Italo Calvino and beside classic horror masters such as Edgar Allan Poe and H. P. Lovecraft. Hauntingly imaginative, with visceral prose that chills to the marrow, the novel is an eerily clairvoyant magnum opus, long overdue but ever timely.
"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a
Align Strategy With Metrics Using Social Monitoring Best Practices “Two or three years from now, every public relations firm that wants to be taken seriously in the C-suite and/or a lead marketing role will have someone like Marshall in its senior leadership ranks, a chief analytics officer responsible for ensuring that account leaders think more deeply about analytics and that thfirm works with the best available outside suppliers to integrate analytics appropriately.” —Paul Holmes, The Holmes Report “Marshall has provided much-needed discipline to our newest marketing frontier—a territory full of outlaws, medicine men, dot com tumbleweeds, and snake oil.” —Ryan Rasmussen, VP Research, Zócalo Group “Marshall Sponder stands apart from the crowd with this work. His case study approach, borne of real-world experience, provides the expert and the amateur alike with bibliography, tools, links, and examples to shortcut the path to bedrock successes. This is a reference work for anyone who wants to explore the potential of social networks.” —W. Reid Cornwell, Ph.D., Chief Scientist, The Center for Internet Research “Marshall is a solutions design genius of unparalleled knowledge and acumen, and when he applies himself to the business of social media, the result is a timely and important commentary on the state of research capabilities for social media.” —Barry Fleming, Director, Analytics & Insights, WCG, and Principal, DharmaBuilt.com About the Book Practically overnight, social media has become a critical tool for every marketing objective—from outreach and customer relations to branding and crisis management. For the most part, however, the data collected through social media is just that: data. It usually seems to hold little or no meaning on which to base business decisions. But the meaning is there . . . if you’re applying the right systems and know how to use them. With Social Media Analytics, you’ll learn how to get supremely valuable information from this revolutionary new marketing tool. One of the most respected leaders in his field and a pioneer in Web analytics, Marshall Sponder shows how to: Choose the best social media platforms for your needs Set up the right processes to achieve your goals Extract the hidden meaning from all the data you collect Quantify your results and determine ROI Filled with in-depth case studies from a range of industries, along with detailed reviews of several social-monitoring platforms, Social Media Analytics takes you beyond “up-to-date” and leads you well into the future—and far ahead of your competition. You will learn how to use the most sophisticated methods yet known to find customers, create relevant content (and track it), mash up data from disparate sources, and much more. Sponder concludes with an insightful look at where the field will likely be going during the next few years. Whether your social media marketing efforts are directed at B2B, B2C, C2C, nonprofit, corporate, or public sector aims, take them to the next step with the techniques, strategies, and methods in Social Media Analytics—the most in-depth, forward-looking book on the subject.
TIME IS RUNNING OUT Decades from now, an artificial black hole has fallen into the Earth's core. As scientists frantically work to prevent the ultimate disaster, they discover that the entire planet could be destroyed within a year. But while they look for an answer, some claim that the only way to save Earth is to let its human inhabitants become extinct: to reset the evolutionary clock and start over. Earth is the Hugo and Locus Award-nominated novel that, with countless accurate predictions, earned David Brin his reputation as a visionary futurologist.
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
The SAGE Handbook of Social Media Research Methods spans the entire research process, from data collection to analysis and interpretation. This second edition has been comprehensively updated and expanded, from 39 to 49 chapters. In addition to a new section of chapters focussing on ethics, privacy and the politics of social media data, the new edition provides broader coverage of topics such as: Data sources Scraping and spidering data Locative data, video data and linked data Platform-specific analysis Analytical tools Critical social media analysis Written by leading scholars from across the globe, the chapters provide a mix of theoretical and applied assessments of topics, and include a range of new case studies and data sets that exemplify the methodological approaches. This Handbook is an essential resource for any researcher or postgraduate student embarking on a social media research project. PART 1: Conceptualising and Designing Social Media Research PART 2: Collecting Data PART 3: Qualitative Approaches to Social Media Data PART 4: Quantitative Approaches to Social Media Data PART 5: Diverse Approaches to Social Media Data PART 6: Research & Analytical Tools PART 7: Social Media Platforms PART 8: Privacy, Ethics and Inequalities
A Proven System to Grow Your Business . . . Today. Social media is the most energized business frontier the world has ever known, yet no one has been able to successfully predict outcomes. Until now. Jim Lupkin, one of the world's foremost social media architects, disrupts the status quo in social media. From the metrics behind his exclusive word-of-mouth formula to his luminous challenge to redefine success, Jim empowers readers to escape the traditional, artificial game of business in favor of an authentic, relationship-first social media movement. Vast and precise, innovative and actionable, Predictive Social Media escorts businesses of all sizes, solopreneurs to global corporations, out of the online darkness and into the light of a predictive way to engage the world.