This volume is the outcome of contributions from 51 scientists who were invited to expose their latest findings on precipitation research and in particular, on the measurement, estimation and prediction of precipitation. The reader is presented with a blend of theoretical, mathematical and technical treatise of precipitation science but also with authentic applications, ranging from local field experiments and country-scale campaigns to multinational space endeavors.
More accurate forecasts of climate conditions over time periods of weeks to a few years could help people plan agricultural activities, mitigate drought, and manage energy resources, amongst other activities; however, current forecast systems have limited ability on these time- scales. Models for such climate forecasts must take into account complex interactions among the ocean, atmosphere, and land surface. Such processes can be difficult to represent realistically. To improve the quality of forecasts, this book makes recommendations about the development of the tools used in forecasting and about specific research goals for improving understanding of sources of predictability. To improve the accessibility of these forecasts to decision-makers and researchers, this book also suggests best practices to improve how forecasts are made and disseminated.
El Nino has been with us for centuries, but now we can forcast it, and thus can prepare far in advance for the extreme climatic events it brings. The emerging ability to forecast climate may be of tremendous value to humanity if we learn how to use the information well. How does society cope with seasonal-to-interannual climatic variations? How have climate forecasts been usedâ€"and how useful have they been? What kinds of forecast information are needed? Who is likely to benefit from forecasting skill? What are the benefits of better forecasting? This book reviews what we know about these and other questions and identifies research directions toward more useful seasonal-to-interannual climate forecasts. In approaching their recommendations, the panel explores: Vulnerability of human activities to climate. State of the science of climate forecasting. How societies coevolved with their climates and cope with variations in climate. How climate information should be disseminated to achieve the best response. How we can use forecasting to better manage the human consequences of climate change.
This handy reference introduces the subject of forecastverification and provides a review of the basic concepts,discussing different types of data that may be forecast. Each chapter covers a different type of predicted quantity(predictand), then looks at some of the relationships betweeneconomic value and skill scores, before moving on to review the keyconcepts and summarise aspects of forecast verification thatreceive the most attention in other disciplines. The book concludes with a discussion on the most importanttopics in the field that are the subject of current research orthat would benefit from future research. An easy to read guide of current techniques with real life casestudies An up-to-date and practical introduction to the differenttechniques and an examination of their strengths andweaknesses Practical advice given by some of the world?s leadingforecasting experts Case studies and illustrations of actual verification and itsinterpretation Comprehensive glossary and consistent statistical andmathematical definition of commonly used terms
According to the United Nations, three out of five people will be living in cities worldwide by the year 2030. The United States continues to experience urbanization with its vast urban corridors on the east and west coasts. Although urban weather is driven by large synoptic and meso-scale features, weather events unique to the urban environment arise from the characteristics of the typical urban setting, such as large areas covered by buildings of a variety of heights; paved streets and parking areas; means to supply electricity, natural gas, water, and raw materials; and generation of waste heat and materials. Urban Meteorology: Forecasting, Monitoring, and Meeting Users' Needs is based largely on the information provided at a Board on Atmospheric Sciences and Climate community workshop. This book describes the needs for end user communities, focusing in particular on needs that are not being met by current urban-level forecasting and monitoring. Urban Meteorology also describes current and emerging meteorological forecasting and monitoring capabilities that have had and will likely have the most impact on urban areas, some of which are not being utilized by the relevant end user communities. Urban Meteorology explains that users of urban meteorological information need high-quality information available in a wide variety of formats that foster its use and within time constraints set by users' decision processes. By advancing the science and technology related to urban meteorology with input from key end user communities, urban meteorologists can better meet the needs of diverse end users. To continue the advancement within the field of urban meteorology, there are both short-term needs-which might be addressed with small investments but promise large, quick returns-as well as future challenges that could require significant efforts and investments.
The Gap Between Weather and Climate Forecasting: Sub-seasonal to Seasonal Prediction is an ideal reference for researchers and practitioners across the range of disciplines involved in the science, modeling, forecasting and application of this new frontier in sub-seasonal to seasonal (S2S) prediction. It provides an accessible, yet rigorous, introduction to the scientific principles and sources of predictability through the unique challenges of numerical simulation and forecasting with state-of-science modeling codes and supercomputers. Additional coverage includes the prospects for developing applications to trigger early action decisions to lessen weather catastrophes, minimize costly damage, and optimize operator decisions. The book consists of a set of contributed chapters solicited from experts and leaders in the fields of S2S predictability science, numerical modeling, operational forecasting, and developing application sectors. The introduction and conclusion, written by the co-editors, provides historical perspective, unique synthesis and prospects, and emerging opportunities in this exciting, complex and interdisciplinary field. - Contains contributed chapters from leaders and experts in sub-seasonal to seasonal science, forecasting and applications - Provides a one-stop shop for graduate students, academic and applied researchers, and practitioners in an emerging and interdisciplinary field - Offers a synthesis of the state of S2S science through the use of concrete examples, enabling potential users of S2S forecasts to quickly grasp the potential for application in their own decision-making - Includes a broad set of topics, illustrated with graphic examples, that highlight interdisciplinary linkages
The goal of this book is multidimensional: a) to help reviving Statistics education in many parts in the world where it is in crisis. For the first time authors from many developing countries have an opportunity to write together with the most prominent world authorities. The editor has spent several years searching for the most reputable statisticians all over the world. International contributors are either presidents of the local statistical societies, or head of the Statistics department at the main university, or the most distinguished statisticians in their countries. b) to enable any non-statistician to obtain quick and yet comprehensive and highly understandable view on certain statistical term, method or application c) to enable all the researchers, managers and practicioners to refresh their knowledge in Statistics, especially in certain controversial fields. d) to revive interest in statistics among students, since they will see its usefulness and relevance in almost all branches of Science.
This book describes recent developments in hydrometeorological forecasting techniques for a range of timescales, from short term to seasonal and longer terms. It conveniently brings together both meteorological and hydrological aspects in a single volume.
This book offers a complete primer, covering the end-to-end process of forecast production, and bringing together a description of all the relevant aspects together in a single volume; with plenty of explanation of some of the more complex issues and examples of current, state-of-the-art practices. Operational Weather Forecasting covers the whole process of forecast production, from understanding the nature of the forecasting problem, gathering the observational data with which to initialise and verify forecasts, designing and building a model (or models) to advance those initial conditions forwards in time and then interpreting the model output and putting it into a form which is relevant to customers of weather forecasts. Included is the generation of forecasts on the monthly-to-seasonal timescales, often excluded in text-books despite this type of forecasting having been undertaken for several years. This is a rapidly developing field, with a lot of variations in practices between different forecasting centres. Thus the authors have tried to be as generic as possible when describing aspects of numerical model design and formulation. Despite the reliance on NWP, the human forecaster still has a big part to play in producing weather forecasts and this is described, along with the issue of forecast verification – how forecast centres measure their own performance and improve upon it. Advanced undergraduates and postgraduate students will use this book to understand how the theory comes together in the day-to-day applications of weather forecast production. In addition, professional weather forecasting practitioners, professional users of weather forecasts and trainers will all find this new member of the RMetS Advancing Weather and Climate series a valuable tool. Provides an end-to-end description of the weather forecasting process Clearly structured and pitched at an accessible level, the book discusses the practical choices that operational forecasting centres have to make in terms of what numerical models they use and when they are run. Takes a very practical approach, using real life case-studies to contextualize information Discusses the latest advances in the area, including ensemble methods, monthly to seasonal range prediction and use of ‘nowcasting’ tools such as radar and satellite imagery Full colour throughout Written by a highly respected team of authors with experience in both academia and practice. Part of the RMetS book series ‘Advancing Weather and Climate’