With the novice user in mind, this beginner's guide explains thebasics behind microwave technology, evaluates available instrumentsand reaction modes, and provides practical hints for everyeventuality. Includes 27 detailed protocols for often-usedreactions. From the contents: 1 Microwave Synthesis - An Introduction 2 Microwave Theory 3 Equipment Review 4 Microwave Processing Techniques 5 Starting With Microwave Chemistry 6 Experimental Protocols 6.1 General Small-Scale Sealed-Vessel Microwave Processing 6.2 Reaction Optimization 6.3 Library Generation 6.4 Reaction Scale-Up 6.5 Special Processing Techniques
The first reports on the application of microwaves in organicsynthesis date back to 1986, but it was not until the recentintroduction of specifically designed and constructed equipment,which countered the safety and reproducibility concerns, thatsynthetic application of microwaves has become established as alaboratory technique. Microwave assisted synthesis is now beingadopted in many industrial and academic laboratories to takeadvantage of the novel chemistry that can be carried out using avariety of organic reaction types. This book demonstrates the underlying principles of microwavedielectric heating and, by reference to a range of organic reactiontypes, it's effective use in synthetic organic chemistry. Toillustrate the impact microwave assisted organic synthesis can haveon chemical research, case studies drawn mainly from thepharmaceutical industry are presented.
The authors of this guide are experts on the use of microwaves for drug synthesis as well as having much experience in teaching courses held under the auspices of the American Chemical Society and the IUPAC. In this handy source of information for any practicing synthetic chemist they focus on common reaction types in medicinal chemistry, including solid-phase and combinatorial methods. They consider the underlying theory, latest developments in microwave applications and include a variety of examples from recent literature, as well as less common applications that are equally relevant for organic and medicinal chemists. An indispensable reference for researchers with an affinity to modern methods.
1. Introduction to microwave chemistry 11; 2. Solvents 29; 3. Chemical reactions in the presence and absence of solvent 77; 4. Synthetic applications 95; 5. Getting started with microwave synthesis 157; 6. Microwave safety considerations 175; 7. Microwave hardware 181.
The first edition of this book achieved considerable success due to its ease of use and practical approach, and to the clear writing style of the authors. The preparation of organic compounds is still central to many disciplines, from the most applied to the highly academic and, more tan ever is not limited to chemists. With an emphasis on the most up-to-date techniques commonly used in organic syntheses, this book draws on the extensive experience of the authors and their association with some of the world's mleading laboratories of synthetic organic chemistry. In this new edition, all the figures have been re-drawn to bring them up to the highest possible standard, and the text has been revised to bring it up to date. Written primarily for postgraduate, advanced undergraduate and industrial organic chemists, particularly those involved in pharmaceutical, agrochemical and other areas of fine chemical research, the book is also a source of reference for biochemists, biologists, genetic engineers, material scientists and polymer researchers.
Shorter reaction times, higher product yields, and enhanced selectivity are some of the advantages microwave heating has over conventional methods, causing its use to transition from a curiosity to mainstream, both in industrial and academic settings. Microwave Heating as a Tool for Sustainable Chemistry showcases the application of microwave heati
Samarium diiodide is one of the most important reducing agents available to synthetic organic chemists. The lanthanide(II) reagent acts by single-electron transfer to organic substrates leading to the formation of both radical and/or anionic intermediates. The power of the reagent arises from its versatility - samarium diiodide can be used in processes ranging from functional group conversions to elaborate carbon-carbon bond-forming cyclization sequences that result in a dramatic increase in molecular complexity. In addition, reactions involving samarium diiodide often show high stereoselectivity as samarium ions can coordinate to Lewis basic sites on substrates and can direct the stereochemical course of reactions. The ability to fine-tune the reactivity of the reagent by the use of additives and co-solvents is an additional, attractive feature. Although samarium diiodide is used extensively by organic chemists, there is still a widely held view that the reagent can be difficult to prepare and use. In addition, samarium diiodide can mediate such a wide variety of organic chemistry that potential new users are often overawed by the extensive primary literature on the reagent. The objective of this book is to provide a concise, practical guide to the reagent. Rather than being a comprehensive review of the chemistry of samarium diiodide, this user-friendly book adopts an "an all you need to know" approach to the topic. The international authors are well-known for their work with the reagent and their expertise covers current developments in new reactivity and selectivity, applications in target synthesis, co-solvent and additive effects, coordination chemistry and mechanism. The book includes the best methods for preparing and handling the reagent, how solvents, co-solvents and additives alter reactivity, the basic mechanisms of reactions, common transformations using the reagent, and emerging areas in samarium diiodide chemistry. The authors have distilled the extensive primary literature to allow the reader to quickly grasp an understanding of the reagent and its utility. The illustrative practical procedures help the reader to prepare and use the reagent in the laboratory while references from the recent literature allow readers to pursue their interest in the popular reagent. The book also contains many illustrations and chemical schemes.
Success in an experimental science such as chemistry depends on good laboratory practice, a knowledge of basic techniques, and the intelligent and careful handling of chemicals. Practical Organic Synthesis is a concise, useful guide to good laboratory practice in the organic chemistry lab with hints and tips on successful organic synthesis. Topics covered include: safety in the laboratory environmentally responsible handling of chemicals and solvents crystallisation distillation chromatographic methods extraction and work-up structure determination by spectroscopic methods searching the chemical literature laboratory notebooks writing a report hints on the synthesis of organic compounds disposal and destruction of dangerous materials drying and purifying solvents Practical Organic Synthesis is based on a successful course in basic organic chemistry laboratory practice which has run for several years at the ETH, Zurich and the University of Berne, and its course book Grundoperationen, now in its sixth edition. Condensing over 30 years of the authors’ organic laboratory teaching experience into one easy-to-read volume, Practical Organic Synthesis is an essential guide for those new to the organic chemistry laboratory, and a handy benchtop guide for practising organic chemists.
The third edition of the bestselling two-volume reference covers everything you need to know about microwave technology for synthesis - from the best equipment to nonthermal effects, from solid-support reactions to catalysis. Completely revised and updated with half of the authors completely new to the project, this comprehensive work is clearly divided into two parts on the fundamentals of microwave irradiation, and application of microwaves and synergies with other enabling techniques. Also new to this edition are chapters on on-line monitoring, flow chemistry, combination with ultrasounds and natural products, including multicomponent reactions. An indispensable source for organic, catalytic, physical, and medicinal chemists.
Tailored to the needs of medicinal and natural products chemists, the second edition of this unique handbook brings the contents up to speed, almost doubling the amount of chemical information with an additional volume. As in the predecessor, a short introductory section covers the theoretical background and evaluates currently available instrumentation and equipment. The main part of the book then goes on to systematically survey the complete range of published microwave-assisted synthesis methods from their beginnings in the 1990s to mid-2011, drawing on data from more than 5,000 reports and publications. Throughout, the focus is on those reactions, reagents and reaction conditions that work, and that are the most relevant for medicinal and natural products chemistry. A much expanded section is devoted to combinatorial, highthroughput and flow chemistry methods.