Iterative Learning Control

Iterative Learning Control

Author: Yangquan Chen

Publisher: Springer

Published: 2007-10-03

Total Pages: 0

ISBN-13: 1846285399

DOWNLOAD EBOOK

This book provides readers with a comprehensive coverage of iterative learning control. The book can be used as a text or reference for a course at graduate level and is also suitable for self-study and for industry-oriented courses of continuing education. Ranging from aerodynamic curve identification robotics to functional neuromuscular stimulation, Iterative Learning Control (ILC), started in the early 80s, is found to have wide applications in practice. Generally, a system under control may have uncertainties in its dynamic model and its environment. One attractive point in ILC lies in the utilisation of the system repetitiveness to reduce such uncertainties and in turn to improve the control performance by operating the system repeatedly. This monograph emphasises both theoretical and practical aspects of ILC. It provides some recent developments in ILC convergence and robustness analysis. The book also considers issues in ILC design. Several practical applications are presented to illustrate the effectiveness of ILC. The applied examples provided in this monograph are particularly beneficial to readers who wish to capitalise the system repetitiveness to improve system control performance.


Iterative Learning Control

Iterative Learning Control

Author: David H. Owens

Publisher: Springer

Published: 2015-10-31

Total Pages: 473

ISBN-13: 1447167724

DOWNLOAD EBOOK

This book develops a coherent and quite general theoretical approach to algorithm design for iterative learning control based on the use of operator representations and quadratic optimization concepts including the related ideas of inverse model control and gradient-based design. Using detailed examples taken from linear, discrete and continuous-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately as their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates the underlying robustness of the paradigm and also includes new control laws that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference and auxiliary signals and also to support new properties such as spectral annihilation. Iterative Learning Control will interest academics and graduate students working in control who will find it a useful reference to the current status of a powerful and increasingly popular method of control. The depth of background theory and links to practical systems will be of use to engineers responsible for precision repetitive processes.


Real-time Iterative Learning Control

Real-time Iterative Learning Control

Author: Jian-Xin Xu

Publisher: Springer Science & Business Media

Published: 2008-12-12

Total Pages: 204

ISBN-13: 1848821751

DOWNLOAD EBOOK

Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The book gives a systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in linear and nonlinear plants pervading mechatronics and batch processes are addressed, in particular: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space.


Practical Iterative Learning Control with Frequency Domain Design and Sampled Data Implementation

Practical Iterative Learning Control with Frequency Domain Design and Sampled Data Implementation

Author: Danwei Wang

Publisher: Springer

Published: 2014-06-19

Total Pages: 232

ISBN-13: 9814585602

DOWNLOAD EBOOK

This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled data methodologies. The frequency domain design methods offer ILC users insights to the convergence performance which is of practical benefits. This book presents a comprehensive framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between learning performance and learning stability. The sampled data implementation ensures effective execution of ILC in practical dynamic systems. The presented sampled data ILC methods also ensure the balance of performance and stability of learning process. Furthermore, the presented theories and methodologies are tested with an ILC controlled robotic system. The experimental results show that the machines can work in much higher accuracy than a feedback control alone can offer. With the proposed ILC algorithms, it is possible that machines can work to their hardware design limits set by sensors and actuators. The target audience for this book includes scientists, engineers and practitioners involved in any systems with repetitive operations.


Iterative Learning Control

Iterative Learning Control

Author: Zeungnam Bien

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 384

ISBN-13: 1461556295

DOWNLOAD EBOOK

Iterative Learning Control (ILC) differs from most existing control methods in the sense that, it exploits every possibility to incorporate past control informa tion, such as tracking errors and control input signals, into the construction of the present control action. There are two phases in Iterative Learning Control: first the long term memory components are used to store past control infor mation, then the stored control information is fused in a certain manner so as to ensure that the system meets control specifications such as convergence, robustness, etc. It is worth pointing out that, those control specifications may not be easily satisfied by other control methods as they require more prior knowledge of the process in the stage of the controller design. ILC requires much less information of the system variations to yield the desired dynamic be haviors. Due to its simplicity and effectiveness, ILC has received considerable attention and applications in many areas for the past one and half decades. Most contributions have been focused on developing new ILC algorithms with property analysis. Since 1992, the research in ILC has progressed by leaps and bounds. On one hand, substantial work has been conducted and reported in the core area of developing and analyzing new ILC algorithms. On the other hand, researchers have realized that integration of ILC with other control techniques may give rise to better controllers that exhibit desired performance which is impossible by any individual approach.


Run-to-Run Control in Semiconductor Manufacturing

Run-to-Run Control in Semiconductor Manufacturing

Author: James Moyne

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 368

ISBN-13: 1420040669

DOWNLOAD EBOOK

Run-to-run (R2R) control is cutting-edge technology that allows modification of a product recipe between machine "runs," thereby minimizing process drift, shift, and variability-and with them, costs. Its effectiveness has been demonstrated in a variety of processes, such as vapor phase epitaxy, lithography, and chemical mechanical planarization. The only barrier to the semiconductor industry's widespread adoption of this highly effective process control is a lack of understanding of the technology. Run to Run Control in Semiconductor Manufacturing overcomes that barrier by offering in-depth analyses of R2R control.


Iterative Learning Control

Iterative Learning Control

Author: Hyo-Sung Ahn

Publisher: Springer Science & Business Media

Published: 2007-06-28

Total Pages: 237

ISBN-13: 1846288592

DOWNLOAD EBOOK

This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.


Robust and Fault-Tolerant Control

Robust and Fault-Tolerant Control

Author: Krzysztof Patan

Publisher: Springer

Published: 2019-03-16

Total Pages: 231

ISBN-13: 303011869X

DOWNLOAD EBOOK

Robust and Fault-Tolerant Control proposes novel automatic control strategies for nonlinear systems developed by means of artificial neural networks and pays special attention to robust and fault-tolerant approaches. The book discusses robustness and fault tolerance in the context of model predictive control, fault accommodation and reconfiguration, and iterative learning control strategies. Expanding on its theoretical deliberations the monograph includes many case studies demonstrating how the proposed approaches work in practice. The most important features of the book include: a comprehensive review of neural network architectures with possible applications in system modelling and control; a concise introduction to robust and fault-tolerant control; step-by-step presentation of the control approaches proposed; an abundance of case studies illustrating the important steps in designing robust and fault-tolerant control; and a large number of figures and tables facilitating the performance analysis of the control approaches described. The material presented in this book will be useful for researchers and engineers who wish to avoid spending excessive time in searching neural-network-based control solutions. It is written for electrical, computer science and automatic control engineers interested in control theory and their applications. This monograph will also interest postgraduate students engaged in self-study of nonlinear robust and fault-tolerant control.


Iterative Learning Control

Iterative Learning Control

Author: Zhonglun Cai

Publisher: Wiley

Published: 2022-07-05

Total Pages: 400

ISBN-13: 9781119019411

DOWNLOAD EBOOK

The book will introduce the fundamentals of iterative learning control theories and applications. It will introduce the fundamentals of iterative learning control including the motivation, its historical development, the general design framework and many practical applications. The book will focus on a number of widely used ILC algorithms and the key considerations in practical implementation. The power of ILC will be demonstrated through three carefully selected case studies in manufacturing, health care and aviation where the process of the system modelling, algorithm design and practical implementation will be detailed.