Practical Approaches to Biological Inorganic Chemistry

Practical Approaches to Biological Inorganic Chemistry

Author: Robert R. Crichton

Publisher: Elsevier

Published: 2019-09-10

Total Pages: 506

ISBN-13: 0444642269

DOWNLOAD EBOOK

Practical Approaches to Biological Inorganic Chemistry, Second Edition, reviews the use of spectroscopic and related analytical techniques to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique, including relevant theory, a clear explanation of what it is, how it works, and how the technique is actually used to evaluate biological structures. New chapters cover Raman Spectroscopy and Molecular Magnetochemistry, but all chapters have been updated to reflect the latest developments in discussed techniques. Practical examples, problems and many color figures are also included to illustrate key concepts. The book is designed for researchers and students who want to learn both the basics and more advanced aspects of key methods in biological inorganic chemistry. - Presents new chapters on Raman Spectroscopy and Molecular Magnetochemistry, as well as updated figures and content throughout - Includes color images throughout to enable easier visualization of molecular mechanisms and structures - Provides worked examples and problems to help illustrate and test the reader's understanding of each technique - Written by leading experts who use and teach the most important techniques used today to analyze complex biological structures


Biological Inorganic Chemistry

Biological Inorganic Chemistry

Author: Robert R. Crichton

Publisher: Academic Press

Published: 2018-05-23

Total Pages: 693

ISBN-13: 0128117427

DOWNLOAD EBOOK

Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function, Third Edition, provides a comprehensive discussion of the biochemical aspects of metals in living systems. The fascinating world of the role of metals in biology, medicine and the environment has progressed significantly since the very successful Second Edition of the book published in 2012. Beginning with an overview of metals and selected nonmetals in biology, the book supports the interdisciplinary nature of this vibrant area of research by providing an introduction to basic coordination chemistry for biologists and structural and molecular biology for chemists. Having built this accessible foundation, the book progresses to discuss biological ligands for metal ions, intermediary metabolism and bioenergetics, and methods to study metals in biological systems. The book also covers metal assimilation pathways; transport, storage, and homeostasis of metal ions; sodium and potassium channels and pumps; magnesium phosphate metabolism and photoreceptors; calcium and cellular signaling; the catalytic role of several classes of mononuclear zinc enzymes; the biological chemistry of iron; and copper chemistry and biochemistry. In addition, the book discusses nickel and cobalt enzymes; manganese chemistry and biochemistry; molybdenum, tungsten, vanadium, and chromium; non-metals in biology; biomineralization; metals in the brain; metals and neurodegeneration; metals in medicine and metals as drugs; and metals in the environment. Now in its Third Edition, this popular and award-winning resource highlights recent exciting advances and provides a thorough introduction for both researchers approaching the field from a variety of backgrounds, as well as advanced students. - Winner of a 2019 Textbook Excellence Award (Texty) from the Textbook and Academic Authors Association - Includes a thorough survey of metals in biological systems: in the human body, in medicine and in the environment - Previous winner (Second Edition) of the 2013 Textbook Excellence Award (Texty) from the Text and Academic Authors Association - Features new sections: an overview of the different functions of essential metal ions; toxic metals in diagnosis and therapeutics; crystal and ligand field theory and their limitations; molecular orbital theory; genetic and molecular biological approaches to study metals; more complex cofactors and their biosynthesis; photosynthetic oxidation of water; man-made environmental pollution; and metals as poisons


Applications of Physical Methods to Inorganic and Bioinorganic Chemistry

Applications of Physical Methods to Inorganic and Bioinorganic Chemistry

Author: Robert A. Scott

Publisher: John Wiley & Sons

Published: 2007-12-10

Total Pages: 597

ISBN-13: 0470032170

DOWNLOAD EBOOK

Modern spectroscopic and instrumental techniques are essential to the practice of inorganic and bioinorganic chemistry. This first volume in the new Wiley Encyclopedia of Inorganic Chemistry Methods and Applications Series provides a consistent and comprehensive description of the practical applicability of a large number of techniques to modern problems in inorganic and bioinorganic chemistry. The outcome is a text that provides invaluable guidance and advice for inorganic and bioinorganic chemists to select appropriate techniques, whilst acting as a source to the understanding of these methods. This volume is also available as part of Encyclopedia of Inorganic Chemistry, 5 Volume Set. This set combines all volumes published as EIC Books from 2007 to 2010, representing areas of key developments in the field of inorganic chemistry published in the Encyclopedia of Inorganic Chemistry. Find out more.


Transition Metals in Coordination Environments

Transition Metals in Coordination Environments

Author: Ewa Broclawik

Publisher: Springer

Published: 2019-03-16

Total Pages: 540

ISBN-13: 3030117146

DOWNLOAD EBOOK

This book focuses on the electronic properties of transition metals in coordination environments. These properties are responsible for the unique and intricate activity of transition metal sites in bio- and inorganic catalysis, but also pose challenges for both theoretical and experimental studies. Written by an international group of recognized experts, the book reviews recent advances in computational modeling and discusses their interplay using experiments. It covers a broad range of topics, including advanced computational methods for transition metal systems; spectroscopic, electrochemical and catalytic properties of transition metals in coordination environments; metalloenzymes and biomimetic compounds; and spin-related phenomena. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in both fundamental and application-oriented research in the field of transition metal systems.


Iron Metabolism

Iron Metabolism

Author: Robert Crichton

Publisher: John Wiley & Sons

Published: 2016-03-31

Total Pages: 576

ISBN-13: 1118925629

DOWNLOAD EBOOK

Iron is indispensable for the growth, development and well-being of almost all living organisms. Biological systems from bacteria, fungi and plants to humans have evolved systems for the uptake, utilisation, storage and homeostasis of iron. Its importance for microbial growth makes its uptake systems a natural target for pathogenic microorganisms and parasites. Uniquely, humans suffer from both iron deficiency and iron overload, while the capacity of iron to generate highly reactive free radicals, causing oxidative stress, is associated with a wide range of human pathologies, including many neurodegenerative diseases. Whereas some essential metal ions like copper and zinc are closely linked with iron metabolism, toxic metals like aluminium and cadmium can interfere with iron metabolism. Finally, iron metabolism and homeostasis are key targets for the development of new drugs for human health. The 4th edition of Iron Metabolism is written in a lively style by one of the leaders in the field, presented in colour and covers the latest discoveries in this exciting area. It will be essential reading for researchers and students in biochemistry, molecular biology, microbiology, cell biology, nutrition and medical sciences. Other interested groups include biological inorganic chemists with an interest in iron metabolism, health professionals with an interest in diseases of iron metabolism, or of diseases in which iron uptake systems are involved (eg. microbial and fungal infections, cancer, neurodegenerative disorders), and researchers in the pharmaceutical industry interested in developing novel drugs targeting iron metabolism/homeostasis.


Spin States in Biochemistry and Inorganic Chemistry

Spin States in Biochemistry and Inorganic Chemistry

Author: Marcel Swart

Publisher: John Wiley & Sons

Published: 2015-09-22

Total Pages: 500

ISBN-13: 1118898281

DOWNLOAD EBOOK

It has long been recognized that metal spin states play a central role in the reactivity of important biomolecules, in industrial catalysis and in spin crossover compounds. As the fields of inorganic chemistry and catalysis move towards the use of cheap, non-toxic first row transition metals, it is essential to understand the important role of spin states in influencing molecular structure, bonding and reactivity. Spin States in Biochemistry and Inorganic Chemistry provides a complete picture on the importance of spin states for reactivity in biochemistry and inorganic chemistry, presenting both theoretical and experimental perspectives. The successes and pitfalls of theoretical methods such as DFT, ligand-field theory and coupled cluster theory are discussed, and these methods are applied in studies throughout the book. Important spectroscopic techniques to determine spin states in transition metal complexes and proteins are explained, and the use of NMR for the analysis of spin densities is described. Topics covered include: DFT and ab initio wavefunction approaches to spin states Experimental techniques for determining spin states Molecular discovery in spin crossover Multiple spin state scenarios in organometallic reactivity and gas phase reactions Transition-metal complexes involving redox non-innocent ligands Polynuclear iron sulfur clusters Molecular magnetism NMR analysis of spin densities This book is a valuable reference for researchers working in bioinorganic and inorganic chemistry, computational chemistry, organometallic chemistry, catalysis, spin-crossover materials, materials science, biophysics and pharmaceutical chemistry.


Iron-Sulfur Clusters in Chemistry and Biology

Iron-Sulfur Clusters in Chemistry and Biology

Author: Tracey Rouault

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-08-20

Total Pages: 672

ISBN-13: 3110308428

DOWNLOAD EBOOK

This volume on iron-sulfur proteins includes chapters that describe the initial discovery of iron-sulfur proteins in the 1960s to elucidation of the roles of iron sulfur clusters as prosthetic groups of enzymes, such as the citric acid cycle enzyme, aconitase, and numerous other proteins, ranging from nitrogenase to DNA repair proteins. The capacity of iron sulfur clusters to accept and delocalize single electrons is explained by basic chemical principles, which illustrate why iron sulfur proteins are uniquely suitable for electron transport and other activities. Techniques used for detection and stabilization of iron-sulfur clusters, including EPR and Mossbauer spectroscopies, are discussed because they are important for characterizing unrecognized and elusive iron sulfur proteins. Recent insights into how nitrogenase works have arisen from multiple advances, described here, including studies of high-resolution crystal structures. Numerous chapters discuss how microbes, plants, and animals synthesize these complex prosthetic groups, and why it is important to understand the chemistry and biogenesis of iron sulfur proteins. In addition to their vital importance in mitochondrial respiration, numerous iron sulfur proteins are important in maintenance of DNA integrity. Multiple rare human diseases with different clinical presentations are caused by mutations of genes in the iron sulfur cluster biogenesis pathway. Understanding iron sulfur proteins is important for understanding a rapidly expanding group of metabolic pathways important in all kingdoms of life, and for understanding processes ranging from nitrogen fixation to human disease.


Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part A

Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part A

Author:

Publisher: Academic Press

Published: 2015-10-05

Total Pages: 722

ISBN-13: 0128028467

DOWNLOAD EBOOK

Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part A & B, are the latest volumes in the Methods in Enzymology series, continuing the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods centered on the use of Electron Paramagnetic Resonance (EPR) techniques to study biological structure and function. - Timely contribution that describes a rapidly changing field - Leading researchers in the field - Broad coverage: Instrumentation, basic theory, data analysis, and applications


Advances in Biomolecular EPR

Advances in Biomolecular EPR

Author:

Publisher: Academic Press

Published: 2022-04-22

Total Pages: 502

ISBN-13: 0323983057

DOWNLOAD EBOOK

Advances in Biomolecular EPR, Volume 666 in the Methods of Enzymology series, highlights new advances in the field, with this new volume presenting interesting chapters on topics including Magnetic Resonance Characterization of Physiologically Important Metal Ion Binding Sites in the Prion and Related Proteins, The catalytic role of metal-radical/protein-based radicals in heme enzymes, Rigid Cu2+-based spin labels for the study of higher-order DNA G-quadruplex structures, Orthogonal spin labeling and membrane proteins: increasing the information content and going towards in cell applications, Spectroscopic investigation of mono- and di-Mn-containing centers in biochemistry with an emphasis on application of paramagnetic resonance techniques, and more. Additional chapters cover In Vivo pO2 Imaging of Tumors: Oxymetry with Very Low-Frequency Electron Paramagnetic Resonance, an Update, EPR contributions to understanding molybdenum-containing enzymes, EPR spectroscopy of Type I reaction centers, Characterization of a substrate-derived radical in the NosN reaction during the biosynthesis of nosiheptide, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in Methods in Enzymology series - Includes the latest information on Advances in Biomolecular EPR


Intelligent Systems Design and Applications

Intelligent Systems Design and Applications

Author: Ajith Abraham

Publisher: Springer Nature

Published: 2021-06-02

Total Pages: 1440

ISBN-13: 3030711870

DOWNLOAD EBOOK

This book highlights recent research on intelligent systems and nature-inspired computing. It presents 130 selected papers from the 19th International Conference on Intelligent Systems Design and Applications (ISDA 2020), which was held online. The ISDA is a premier conference in the field of computational intelligence, and the latest installment brought together researchers, engineers and practitioners whose work involves intelligent systems and their applications in industry. Including contributions by authors from 40 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of Computer Science and Engineering.