Potential Environmental Impacts of Bioenergy Crop Production
Author: United States. Congress. Office of Technology Assessment
Publisher: Congress
Published: 1993
Total Pages: 86
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: United States. Congress. Office of Technology Assessment
Publisher: Congress
Published: 1993
Total Pages: 86
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher: DIANE Publishing
Published:
Total Pages: 152
ISBN-13: 1428921044
DOWNLOAD EBOOKAuthor: Jose Carlos Magalhaes Pires
Publisher: Academic Press
Published: 2019-08-08
Total Pages: 0
ISBN-13: 9780128162293
DOWNLOAD EBOOKBioenergy with Carbon Capture and Storage: Using Natural Resources for Sustainable Development presents the technologies associated with bioenergy and CCS and its applicability as an emissions reduction tool. The book explores existing climate policies and current carbon capture and storage technologies. Sections offer an overview of several routes to use biomass and produce bioenergy through processes with low or even negative CO2 emissions. Associated technology and the results of recent research studies to improve the sustainability of the processes are described, pointing out future trends and needs. This book can be used by bioenergy engineering researchers in industry and academia and by professionals and researchers in carbon capture and storage.
Author: Patricia Thornley
Publisher: Academic Press
Published: 2017-11-27
Total Pages: 288
ISBN-13: 0128094583
DOWNLOAD EBOOKGreenhouse Gases Balance of Bioenergy Systems covers every stage of a bioenergy system, from establishment to energy delivery, presenting a comprehensive, multidisciplinary overview of all the relevant issues and environmental risks. It also provides an understanding of how these can be practically managed to deliver sustainable greenhouse gas reductions. Its expert chapter authors present readers to the methods used to determine the greenhouse gas balance of bioenergy systems, the data required and the significance of the results obtained. It also provides in-depth discussion of key issues and uncertainties, such as soil, agriculture, forestry, fuel conversion and emissions formation. Finally, international case studies examine typical GHG reduction levels for different systems and highlight best practices for bioenergy GHG mitigation. For bringing together into one volume information from several different fields that was up until now scattered throughout many different sources, this book is ideal for researchers, graduate students and professionals coming into the bioenergy field, no matter their previous background. It will be particularly useful for bioenergy researchers seeking to calculate greenhouse gas balances for systems they are studying. I will also be an important resource for policy makers and energy analysts. - Uses a multidisciplinary approach to synthesize the diverse information that is required to competently execute GHG balances for bioenergy systems - Presents an in-depth understanding of the science underpinning key issues and uncertainty in GHG assessments of bioenergy systems - Includes case studies that examine ways to maximize the GHG reductions delivered by different bioenergy systems
Author: United States. Congress. Office of Technology Assessment
Publisher: Congress
Published: 1993
Total Pages: 86
ISBN-13:
DOWNLOAD EBOOKAuthor: Bharat P. Singh
Publisher: CABI
Published: 2013
Total Pages: 537
ISBN-13: 1845938852
DOWNLOAD EBOOKProviding comprehensive coverage on biofuel crop production and the technological, environmental and resource issues associated with a sustainable biofuel industry, this book is ideal for researchers and industry personnel. Beginning with an introduction to biofuels and the challenges they face, the book then includes detailed coverage on crops of current importance or with high future prospects, including sections on algae, sugar crops and grass, oil and forestry species. The chapters focus on the genetics, breeding, cultivation, harvesting and handling of each crop.
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Published: 2019-04-08
Total Pages: 511
ISBN-13: 0309484529
DOWNLOAD EBOOKTo achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.
Author: National Research Council
Publisher: National Academies Press
Published: 2012-01-29
Total Pages: 416
ISBN-13: 0309187516
DOWNLOAD EBOOKIn the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.
Author: N. El Bassam
Publisher: Earthscan
Published: 2010
Total Pages: 545
ISBN-13: 1849774781
DOWNLOAD EBOOKThis completely revised second edition includes new information on biomass in relation to climate change, new coverage of vital issues including the "food versus fuel" debate, and essential new information on "second generation" fuels and advances in conversion techniques. The book begins with a guide to biomass accumulation, harvesting, transportation and storage, as well as conversion technologies for biofuels. This is followed by an examination of the environmental impact and economic and social dimensions, including prospects for renewable energy. The book then goes on to cover all the main potential energy crops.
Author: Santosh Kumar Upadhyay
Publisher: John Wiley & Sons
Published: 2021-06-22
Total Pages: 468
ISBN-13: 111971723X
DOWNLOAD EBOOKBIOPROSPECTING OF PLANT BIODIVERSITY FOR INDUSTRIAL MOLECULES A comprehensive collection of recent translational research on bioresource utilization and ecological sustainability Bioprospecting of Plant Biodiversity for Industrial Molecules provides an up-to-date overview of the ongoing search for biodiverse organic compounds for use in pharmaceuticals, bioceuticals, agriculture, and other commercial applications. Bringing together work from a panel of international contributors, this comprehensive monograph covers natural compounds of plants, endophyte enzymes and their applications in industry, plant bioprospecting in cosmetics, marine bioprospecting of seaweeds, and more. Providing global perspectives on bioprospecting of plant biodiversity, the authors present research on enzymes, mineral micro-nutrients, biopesticides, algal biomass, and other bioactive molecules. In-depth chapters assess the health impacts and ecological sustainability of the various biomolecules and identify existing and possible applications ranging from ecological restoration to production of essential oils and cosmetics. Other topics include, bio-energy crops as alternative fuel resources, the role of plants in phytoremediation of industrial waste, and the industrial applications of endophyte enzymes. This comprehensive resource: Includes a through introduction to plant biodiversity and bioprospecting Will further the knowledge of application of different plants and improve research investigation techniques. Summarizes novel approaches for researchers in food science, microbiology, biochemistry, and biotechnology Bioprospecting of Plant Biodiversity for Industrial Molecules is an indispensable compendium of biological research for scientists, researchers, graduate and postgraduate students, and academics in the areas of microbiology, food biotechnology, industrial microbiology, plant biotechnology, and microbial biotechnology.