Poncelet Porisms and Beyond

Poncelet Porisms and Beyond

Author: Vladimir Dragović

Publisher: Springer Science & Business Media

Published: 2011-05-02

Total Pages: 293

ISBN-13: 3034800150

DOWNLOAD EBOOK

The goal of the book is to present, in a complete and comprehensive way, areas of current research interlacing around the Poncelet porism: dynamics of integrable billiards, algebraic geometry of hyperelliptic Jacobians, and classical projective geometry of pencils of quadrics. The most important results and ideas, classical as well as modern, connected to the Poncelet theorem are presented, together with a historical overview analyzing the classical ideas and their natural generalizations. Special attention is paid to the realization of the Griffiths and Harris programme about Poncelet-type problems and addition theorems. This programme, formulated three decades ago, is aimed to understanding the higher-dimensional analogues of Poncelet problems and the realization of the synthetic approach of higher genus addition theorems.


Poncelet Porisms and Beyond

Poncelet Porisms and Beyond

Author: Vladimir Dragović

Publisher: Birkhäuser

Published: 2011-08-26

Total Pages: 294

ISBN-13: 9783034800167

DOWNLOAD EBOOK

The goal of the book is to present, in a complete and comprehensive way, areas of current research interlacing around the Poncelet porism: dynamics of integrable billiards, algebraic geometry of hyperelliptic Jacobians, and classical projective geometry of pencils of quadrics. The most important results and ideas, classical as well as modern, connected to the Poncelet theorem are presented, together with a historical overview analyzing the classical ideas and their natural generalizations. Special attention is paid to the realization of the Griffiths and Harris programme about Poncelet-type problems and addition theorems. This programme, formulated three decades ago, is aimed to understanding the higher-dimensional analogues of Poncelet problems and the realization of the synthetic approach of higher genus addition theorems.


Integrable Systems and Algebraic Geometry

Integrable Systems and Algebraic Geometry

Author: Ron Donagi

Publisher: Cambridge University Press

Published: 2020-04-02

Total Pages: 421

ISBN-13: 1108715745

DOWNLOAD EBOOK

A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.


Integrable Systems and Algebraic Geometry: Volume 1

Integrable Systems and Algebraic Geometry: Volume 1

Author: Ron Donagi

Publisher: Cambridge University Press

Published: 2020-04-02

Total Pages: 421

ISBN-13: 110880358X

DOWNLOAD EBOOK

Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. This first volume covers a wide range of areas related to integrable systems, often emphasizing the deep connections with algebraic geometry. Common themes include theta functions and Abelian varieties, Lax equations, integrable hierarchies, Hamiltonian flows and difference operators. These powerful tools are applied to spinning top, Hitchin, Painleve and many other notable special equations.


Asymptotic, Algebraic and Geometric Aspects of Integrable Systems

Asymptotic, Algebraic and Geometric Aspects of Integrable Systems

Author: Frank Nijhoff

Publisher: Springer Nature

Published: 2020-10-23

Total Pages: 240

ISBN-13: 3030570002

DOWNLOAD EBOOK

This proceedings volume gathers together selected works from the 2018 “Asymptotic, Algebraic and Geometric Aspects of Integrable Systems” workshop that was held at TSIMF Yau Mathematical Sciences Center in Sanya, China, honoring Nalini Joshi on her 60th birthday. The papers cover recent advances in asymptotic, algebraic and geometric methods in the study of discrete integrable systems. The workshop brought together experts from fields such as asymptotic analysis, representation theory and geometry, creating a platform to exchange current methods, results and novel ideas. This volume's articles reflect these exchanges and can be of special interest to a diverse group of researchers and graduate students interested in learning about current results, new approaches and trends in mathematical physics, in particular those relevant to discrete integrable systems.


ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics

ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics

Author: Liang-Yee Cheng

Publisher: Springer Nature

Published: 2022-08-12

Total Pages: 1080

ISBN-13: 3031135881

DOWNLOAD EBOOK

This book covers recent achievements on the ever-expanding field of Geometry and Graphics on both analogical and digital fronts, from theoretical investigations to a broad range of applications, new teaching methodologies, and historical aspects. It is from 20th International Conference on Geometry and Graphics (ICGG2022), a series of conference that started in 1978 and promoted by International Society for Geometry and Graphics, which aims to foster international collaboration and stimulate the scientific research and teaching innovations in the multidisciplinary field. The contents of the book are organized in: Theoretical Geometry and Graphics; Applied Geometry and Graphics; Engineering Computer Graphics; Graphics Education; Geometry and Graphics in History, and are intent for the academics, researchers, and professionals in architecture, engineering, industrial design, mathematics, and arts.


From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory

From Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory

Author: Fritz Gesztesy

Publisher: Springer Nature

Published: 2021-11-11

Total Pages: 388

ISBN-13: 3030754251

DOWNLOAD EBOOK

The main topics of this volume, dedicated to Lance Littlejohn, are operator and spectral theory, orthogonal polynomials, combinatorics, number theory, and the various interplays of these subjects. Although the event, originally scheduled as the Baylor Analysis Fest, had to be postponed due to the pandemic, scholars from around the globe have contributed research in a broad range of mathematical fields. The collection will be of interest to both graduate students and professional mathematicians. Contributors are: G.E. Andrews, B.M. Brown, D. Damanik, M.L. Dawsey, W.D. Evans, J. Fillman, D. Frymark, A.G. García, L.G. Garza, F. Gesztesy, D. Gómez-Ullate, Y. Grandati, F.A. Grünbaum, S. Guo, M. Hunziker, A. Iserles, T.F. Jones, K. Kirsten, Y. Lee, C. Liaw, F. Marcellán, C. Markett, A. Martinez-Finkelshtein, D. McCarthy, R. Milson, D. Mitrea, I. Mitrea, M. Mitrea, G. Novello, D. Ong, K. Ono, J.L. Padgett, M.M.M. Pang, T. Poe, A. Sri Ranga, K. Schiefermayr, Q. Sheng, B. Simanek, J. Stanfill, L. Velázquez, M. Webb, J. Wilkening, I.G. Wood, M. Zinchenko.


The Universe of Conics

The Universe of Conics

Author: Georg Glaeser

Publisher: Springer

Published: 2016-03-22

Total Pages: 496

ISBN-13: 3662454505

DOWNLOAD EBOOK

This text presents the classical theory of conics in a modern form. It includes many novel results that are not easily accessible elsewhere. The approach combines synthetic and analytic methods to derive projective, affine and metrical properties, covering both Euclidean and non-Euclidean geometries. With more than two thousand years of history, conic sections play a fundamental role in numerous fields of mathematics and physics, with applications to mechanical engineering, architecture, astronomy, design and computer graphics. This text will be invaluable to undergraduate mathematics students, those in adjacent fields of study, and anyone with an interest in classical geometry. Augmented with more than three hundred fifty figures and photographs, this innovative text will enhance your understanding of projective geometry, linear algebra, mechanics, and differential geometry, with careful exposition and many illustrative exercises.