Polyploidy and Genome Evolution

Polyploidy and Genome Evolution

Author: Pamela Soltis

Publisher: Springer Science & Business Media

Published: 2012-10-03

Total Pages: 416

ISBN-13: 3642314414

DOWNLOAD EBOOK

Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution. Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes. In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage. This process essentially acts as a “reset” button, resulting in genomic changes that may ultimately promote adaptive speciation. This book brings together for the first time the conceptual and theoretical underpinnings of polyploid genome evolution with syntheses of the patterns and processes of genome evolution in diverse polyploid groups. Because polyploidy is most common and best studied in plants, the book emphasizes plant models, but recent studies of vertebrates and fungi are providing fresh perspectives on factors that allow polyploid speciation and shape polyploid genomes. The emerging paradigm is that polyploidy – through alterations in genome structure and gene regulation – generates genetic and phenotypic novelty that manifests itself at the chromosomal, physiological, and organismal levels, with long-term ecological and evolutionary consequences.


Polyploidy and Genome Evolution

Polyploidy and Genome Evolution

Author: Pamela Soltis

Publisher: Springer

Published: 2014-11-09

Total Pages: 0

ISBN-13: 9783642432811

DOWNLOAD EBOOK

Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution. Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes. In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage. This process essentially acts as a “reset” button, resulting in genomic changes that may ultimately promote adaptive speciation. This book brings together for the first time the conceptual and theoretical underpinnings of polyploid genome evolution with syntheses of the patterns and processes of genome evolution in diverse polyploid groups. Because polyploidy is most common and best studied in plants, the book emphasizes plant models, but recent studies of vertebrates and fungi are providing fresh perspectives on factors that allow polyploid speciation and shape polyploid genomes. The emerging paradigm is that polyploidy – through alterations in genome structure and gene regulation – generates genetic and phenotypic novelty that manifests itself at the chromosomal, physiological, and organismal levels, with long-term ecological and evolutionary consequences.


Polyploid and Hybrid Genomics

Polyploid and Hybrid Genomics

Author: Z. Jeffrey Chen

Publisher: John Wiley & Sons

Published: 2013-04-05

Total Pages: 646

ISBN-13: 1118552849

DOWNLOAD EBOOK

Polyploidy plays an important role in biological diversity, trait improvement, and plant species survival. Understanding the evolutionary phenomenon of polyploidy is a key challenge for plant and crop scientists. This book is made up of contributions from leading researchers in the field from around the world, providing a truly global review of the subject. Providing broad-ranging coverage, and up-to-date information from some of the world’s leading researchers, this book is an invaluable resource for geneticists, plant and crop scientists, and evolutionary biologists.


Polyploidy

Polyploidy

Author: Walter H. Lewis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 576

ISBN-13: 1461330696

DOWNLOAD EBOOK

Polyploidy as a dramatic mutational event in the process of evolution has wide implications in nature and for the generation of new and improved crops. The three day Conference on POLYPLOIDY: BIOLOGICAL RELEVANCE focused on three aspects of this natural phenomenon: the first emphasized the characteristics of polyploidy, the second described the occurrence of polyploidy among plants and animals, and the third considered past and future areas of both fundamental and pragmatic research that involve polyploidy. New information relative to origin, cytogenetics, ecology, physiology, biochemistry, and populational studies stress the need to reexamine current views on the origins of polyploidy and its significance among both plants and animals. There are major differences in the occurrence of polyploidy between. plant groups and it is proving a much more common event among bisexual vertebrates than heretofore considered possible. Crop development and improvement must utilize approaches based fundamentally on more natural systems; in fact future research should focus more on polyploidy as a natural phenomenon that needs study at all levels of endeavor from field-oriented populational aspects to sophisticated molecular analyses and genome manipulations. This volume provides a summary of current knowledge of polyploidy pertinent to botanists, zoologists, and agriculturists who are interested in the evolution o~natural systems and who are concerned with the contribution that crop improvement can make to human well-being. Walter H. Lewis St. Louis, Missouri October, 1979 v ACKNOWLEDGMENTS The Host Committee thanks all speakers and moderators for their generous contribution to the Conference and to this volume.


Invasion Biology

Invasion Biology

Author: Mark A. Davis

Publisher: Oxford University Press

Published: 2009-01-29

Total Pages:

ISBN-13: 0191551198

DOWNLOAD EBOOK

With the exception of climate change, biological invasions have probably received more attention during the past ten years than any other ecological topic. Yet this is the first synthetic, single-authored overview of the field since Williamson's 1996 book. Written fifty years after the publication of Elton's pioneering monograph on the subject, Invasion Biology provides a comprehensive and up-to-date review of the science of biological invasions while also offering new insights and perspectives relating to the processes of introduction, establishment, and spread. The book connects science with application by describing the health, economic, and ecological impacts of invasive species as well as the variety of management strategies developed to mitigate harmful impacts. The author critically evaluates the approaches, findings, and controversies that have characterized invasion biology in recent years, and suggests a variety of future research directions. Carefully balanced to avoid distinct taxonomic, ecosystem, and geographic (both investigator and species) biases, the book addresses a wide range of invasive species (including protists, invertebrates, vertebrates, fungi, and plants) which have been studied in marine, freshwater, and terrestrial environments throughout the world by investigators equally diverse in their origins. This accessible and thought-provoking text will be of particular interest to graduate level students and established researchers in the fields of invasion biology, community ecology, conservation biology, and restoration ecology. It will also be of value and use to land managers, policy makers, and other professionals charged with controlling the negative impacts associated with recently arrived species.


Handbook of Maize

Handbook of Maize

Author: Jeff L. Bennetzen

Publisher: Springer Science & Business Media

Published: 2009-01-16

Total Pages: 785

ISBN-13: 0387778632

DOWNLOAD EBOOK

Maize is one of the world’s highest value crops, with a multibillion dollar annual contribution to agriculture. The great adaptability and high yields available for maize as a food, feed and forage crop have led to its current production on over 140 million hectares worldwide, with acreage continuing to grow at the expense of other crops. In terms of tons of cereal grain produced worldwide, maize has been number one for many years. Moreover, maize is expanding its contribution to non-food uses, including as a major source of ethanol as a fuel additive or fuel alternative in the US. In addition, maize has been at the center of the transgenic plant controversy, serving as the first food crop with released transgenic varieties. By 2008, maize will have its genome sequence released, providing the sequence of the first average-size plant genome (the four plant genomes that are now sequenced come from unusually tiny genomes) and of the most complex genome sequenced from any organism. Among plant science researchers, maize has the second largest and most productive research community, trailing only the Arabidopsis community in scale and significance. At the applied research and commercial improvement levels, maize has no peers in agriculture, and consists of thousands of contributors worthwhile. A comprehensive book on the biology of maize has not been published. The "Handbook of Maize: the Genetics and Genomics" center on the past, present and future of maize as a model for plant science research and crop improvement. The books include brief, focused chapters from the foremost maize experts and feature a succinct collection of informative images representing the maize germplasm collection.


Sex Control in Aquaculture

Sex Control in Aquaculture

Author: Hanping Wang

Publisher: John Wiley & Sons

Published: 2018-11-08

Total Pages: 1969

ISBN-13: 1119127270

DOWNLOAD EBOOK

Awarded Bookauthority's "Best Aquaculture Books of all Time" A comprehensive resource that covers all the aspects of sex control in aquaculture written by internationally-acclaimed scientists Comprehensive in scope, Sex Control in Aquaculture first explains the concepts and rationale for sex control in aquaculture, which serves different purposes. The most important are: to produce monosex stocks to rear only the fastest-growing sex in some species, to prevent precocious or uncontrolled reproduction in other species and to aid in broodstock management. The application of sex ratio manipulation for population control and invasive species management is also included. Next, this book provides detailed and updated information on the underlying genetic, epigenetic, endocrine and environmental mechanisms responsible for the establishment of the sexes, and explains chromosome set manipulation techniques, hybridization and the latest gene knockout approaches. Furthermore, the book offers detailed protocols and key summarizing information on how sex control is practiced worldwide in 35 major aquaculture species or groups, including fish and crustaceans, and puts the focus on its application in the aquaculture industry. With contributions from an international panel of leading scientists, Sex Control in Aquaculture will appeal to a large audience: aquaculture/fisheries professionals and students, scientists or biologists working with basic aspects of fish/shrimp biology, growth and reproductive endocrinology, genetics, molecular biology, evolutionary biology, and R&D managers and administrators. This text explores sex control technologies and monosex production of commercially-farmed fish and crustacean species that are highly in demand for aquaculture, to improve feed utilization efficiency, reduce energy consumption for reproduction and eliminate a series of problems caused by mixed sex rearing. Thus, this book: Contains contributions from an international panel of leading scientists and professionals in the field Provides comprehensive coverage of both established and new technologies to control sex ratios that are becoming more necessary to increase productivity in aquaculture Includes detailed coverage of the most effective sex control techniques used in the world's most important commercially-farmed species Sex Control in Aquaculture is the comprehensive resource for understanding the biological rationale, scientific principles and real-world practices in this exciting and expanding field.


Evolution by Gene Duplication

Evolution by Gene Duplication

Author: Susumu Ohno

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 171

ISBN-13: 364286659X

DOWNLOAD EBOOK

It is said that "necessity is the mother of invention". To be sure, wheels and pulleys were invented out of necessity by the tenacious minds of upright citi zens. Looking at the history of mankind, however, one has to add that "Ieisure is the mother of cultural improvement". Man's creative genius flourished only when his mind, freed from the worry of daily toils, was permitted to entertain apparently useless thoughts. In the same manner, one might say with regard to evolution that "natural selection mere(y tnodifted, while redundanry created". Natural selection has been extremely effective in policing alleHe mutations which arise in already existing gene loci. Because of natural selection, organisms have been able to adapt to changing environments, and by adaptive radiation many new species were created from a common ancestral form. Y et, being an effective policeman, natural selection is extremely conservative by nature. Had evolution been entirely dependent upon natural selection, from a bacterium only numerous forms of bacteria would have emerged. The creation of metazoans, vertebrates and finally mammals from unicellular organisms would have been quite impos sible, for such big leaps in evolution required the creation of new gene loci with previously nonexistent functions. Only the cistron which became redun dant was able to escape from the relentless pressure of natural selection, and by escaping, it accumulated formerly forbidden mutations to emerge as a new gene locus.