A symposium titled "Polyphosphazenes in Biomedicine, Engineering & Pioneering Synthesis" was held at a recent meeting of the American Chemical Society (ACS) in August 2017 in Washington, DC. The chapters in this book provide a summary of the international contributions reported at that meeting, the purpose of which was to bring together a broad range of topics, research investigators, and representatives from industry to discuss the current status of different aspects of this field.
This book describes preparation techniques for well-defined, customizable poly(organo)phosphazene materials and their applications in nanomedicine, i.e. as macromolecular carriers for drug delivery, immunology, gene therapy, or tissue regeneration. This 2nd edition of Polyphosphazenes for Medical Applications has been updated and extended for researchers in the field as well as those considering using polyphosphazenes for a specific application.
Now in its fifth edition, Principles of Tissue Engineering has been the definite resource in the field of tissue engineering for more than a decade. The fifth edition provides an update on this rapidly progressing field, combining the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation by the world's experts of what is currently known about each specific organ system. As in previous editions, this book creates a comprehensive work that strikes a balance among the diversity of subjects that are related to tissue engineering, including biology, chemistry, material science, and engineering, among others, while also emphasizing those research areas that are likely to be of clinical value in the future. This edition includes greatly expanded focus on stem cells, including induced pluripotent stem (iPS) cells, stem cell niches, and blood components from stem cells. This research has already produced applications in disease modeling, toxicity testing, drug development, and clinical therapies. This up-to-date coverage of stem cell biology and the application of tissue-engineering techniques for food production – is complemented by a series of new and updated chapters on recent clinical experience in applying tissue engineering, as well as a new section on the emerging technologies in the field. - Organized into twenty-three parts, covering the basics of tissue growth and development, approaches to tissue and organ design, and a summary of current knowledge by organ system - Introduces a new section and chapters on emerging technologies in the field - Full-color presentation throughout
Synthetic Inorganic Chemistry: New Perspectives presents summaries of the work of some of the most creative researchers in the field. The book highlights the most novel approaches and burgeoning applications of synthetic inorganic chemistry in development. Topics include non-precious metals in catalysis, smart inorganic polymers, new inorganic therapeutics, new photocatalysts for hydrogen production, and more. As the first volume in the Developments in Inorganic Chemistry series, this work is a valuable resource for students and researchers working in inorganic chemistry and material science. - Illustrates the scope and vitality of modern synthetic inorganic chemistry - Shows the centrality of inorganic chemistry, addressing a variety of global challenges - Serves to define the current, important and expanding roles of synthetic inorganic chemistry in interdisciplinary areas such as materials science, synthetic organic chemistry, homogeneous and heterogeneous catalysis
This textbook introduces the reader to the elementary chemistry on which materials science depends by discussing the different classes of materials and their applications. It shows the reader how different types of materials are produced, why they possess specific properties, and how they are used in technology. Each chapter contains study questions to enable discussions and consolidation of the acquired knowledge. The new edition of this textbook is completely revised and updated to reflect the significant expansion of the field of materials chemistry over the last years, covering now also topics such as graphene, nanotubes, light emitting diodes, extreme photolithography, biomedical materials, and metal organic frameworks. From the reviews of the first edition: "This book is not only informative and comprehensive for a novice reader, but also a valuable resource for a scientist and/or an industrialist for new and novel challenges." (Materials and Manufacturing Process, June 2009) "Allcock provides a clear path by first describing basic chemical principles, then distinguishing between the various major materials groups, and finally enriching the student by offering a variety of special examples." (CHOICE, April 2009) "Proceeding logically from the basics to materials in advanced technology, it covers the fundamentals of materials chemistry, including principles of materials synthesis and materials characterization methods." (Internationale Fachzeitschrift Metall, January 2009)
The development and use of medical and dental materials are highly interdisciplinary endeavors which require expertise in chemistry, materials science, medicine and/or dentistry, mechanics and design engineering. The Symposium upon which this treatise is based was organized to bring members from these communities together to explore problems of mutual interest. The biomaterials which are used in medical or dental prostheses must not only exhibit structural stability and provide the desired function, but they must also perform over extended periods of time in the environment of the body. The latter is a very stringent requirement. The oral and other physiological environments are designed by nature to break down many organic substances. Also of importance is the requirement that materials used in the prosthesis not have a deleterious effect on body tissues. Most foreign (to the body) substances are somewhat toxic to human tissues; in fact, few factors are more limiting in the medical prosthesis field than the biocompatibility problem. Some of these problems and the attempts to solve them are discussed in this volume.
Brings together, analyzes, and contextualizes the latest findings and practical applications Polyphosphazenes, an emerging class of polymers, include macromolecules, which have been proven to be biocompatible, biodegradable, and bioactive. Their unprecedented structural diversity and unique properties make them suitable as vaccine adjuvants, microencapsulating agents, biodegradable materials, scaffolds for tissue engineering, biocompatible coatings, and carriers for gene delivery. Polyphosphazenes for Biomedical Applications offers a thorough review of polyphosphazene research findings in the life sciences, chemistry, and chemical engineering. It emphasizes biomedical applications as well as recent advances in polyphosphazene development such as high-throughput discovery and the latest controlled methods of synthesis. The book brings together, analyzes, and contextualizes a wealth of knowledge that previously could only be found scattered throughout the scientific literature. Following two introductory chapters, the book reviews: Vaccine delivery and immunomodulation Biomaterials Drug delivery systems Biodetection Well-defined polyphosphazenes: synthetic aspects and novel molecular architectures All the chapters have been written by leading researchers in the field. Editor Alexander Andrianov, who has led the effort to commercialize polyphosphazenes for biomedical applications, has carefully reviewed and edited all chapters to ensure readability, accuracy, and thoroughness. Polyphosphazenes for Biomedical Applications is not only intended for researchers working in polyphosphazene chemistry, but also for all researchers seeking solutions to problems arising in the areas of biomaterials, drug delivery systems, and controlled release formulations.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
1. T. Takata, N. Kihara, Y. Furusho: Polyrotaxanes and Polycatenanes: Recent Advances in Syntheses and Applications of Polymers Comprising of Interlocked Structures.- 2. M. Suginome, Y. Ito: Transition Metal-Mediated Polymerization of Isocyanides.- 3. K. Osakada, D. Takeuchi: Coordination Polymerization of Dienes, Allenes and Methylenecycloalkanes.