Polynomial Approximation on Polytopes

Polynomial Approximation on Polytopes

Author: Vilmos Totik

Publisher: American Mathematical Soc.

Published: 2014-09-29

Total Pages: 124

ISBN-13: 1470416662

DOWNLOAD EBOOK

Polynomial approximation on convex polytopes in is considered in uniform and -norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the -case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate -functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.


Moduli of Smoothness

Moduli of Smoothness

Author: Z. Ditzian

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 233

ISBN-13: 1461247780

DOWNLOAD EBOOK

The subject of this book is the introduction and application of a new measure for smoothness offunctions. Though we have both previously published some articles in this direction, the results given here are new. Much of the work was done in the summer of 1984 in Edmonton when we consolidated earlier ideas and worked out most of the details of the text. It took another year and a half to improve and polish many of the theorems. We express our gratitude to Paul Nevai and Richard Varga for their encouragement. We thank NSERC of Canada for its valuable support. We also thank Christine Fischer and Laura Heiland for their careful typing of our manuscript. z. Ditzian V. Totik CONTENTS Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PART I. THE MODULUS OF SMOOTHNESS Chapter 1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1. Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2. Discussion of Some Conditions on cp(x). . . . • . . . . . . . • . . • . . • • . 8 . . . • . 1.3. Examples of Various Step-Weight Functions cp(x) . . • . . • . . • . . • . . . 9 . . • Chapter 2. The K-Functional and the Modulus of Continuity ... . ... 10 2.1. The Equivalence Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 . . . . . . . . . 2.2. The Upper Estimate, Kr.tp(f, tr)p ~ Mw;(f, t)p, Case I . . . . . . . . . . . . 12 . . . 2.3. The Upper Estimate of the K-Functional, The Other Cases. . . . . . . . . . 16 . 2.4. The Lower Estimate for the K-Functional. . . . . . . . . . . . . . . . . . . 20 . . . . . Chapter 3. K-Functionals and Moduli of Smoothness, Other Forms. 24 3.1. A Modified K-Functional . . . . . . . . . . . . . . . . . . . . . . . . . . 24 . . . . . . . . . . 3.2. Forward and Backward Differences. . . . . . . . . . . . . . . . . . . . . . 26 . . . . . . . 3.3. Main-Part Modulus of Smoothness. . . . . . . . . . . . . . . . . . . . . . 28 . . . . . . .


Topics in Hyperplane Arrangements, Polytopes and Box-Splines

Topics in Hyperplane Arrangements, Polytopes and Box-Splines

Author: Corrado De Concini

Publisher: Springer Science & Business Media

Published: 2010-08-30

Total Pages: 387

ISBN-13: 0387789626

DOWNLOAD EBOOK

Topics in Hyperplane Arrangements, Polytopes and Box-Splines brings together many areas of research that focus on methods to compute the number of integral points in suitable families or variable polytopes. The topics introduced expand upon differential and difference equations, approximation theory, cohomology, and module theory. This book, written by two distinguished authors, engages a broad audience by proving the a strong foudation. This book may be used in the classroom setting as well as a reference for researchers.


Convex Polytopes

Convex Polytopes

Author: Branko Grünbaum

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 561

ISBN-13: 1461300193

DOWNLOAD EBOOK

"The original edition [...] inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." --Peter McMullen, University College London


Polytopes

Polytopes

Author: Tibor Bisztriczky

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 515

ISBN-13: 9401109249

DOWNLOAD EBOOK

The aim of this volume is to reinforce the interaction between the three main branches (abstract, convex and computational) of the theory of polytopes. The articles include contributions from many of the leading experts in the field, and their topics of concern are expositions of recent results and in-depth analyses of the development (past and future) of the subject. The subject matter of the book ranges from algorithms for assignment and transportation problems to the introduction of a geometric theory of polyhedra which need not be convex. With polytopes as the main topic of interest, there are articles on realizations, classifications, Eulerian posets, polyhedral subdivisions, generalized stress, the Brunn--Minkowski theory, asymptotic approximations and the computation of volumes and mixed volumes. For researchers in applied and computational convexity, convex geometry and discrete geometry at the graduate and postgraduate levels.


Computing the Continuous Discretely

Computing the Continuous Discretely

Author: Matthias Beck

Publisher: Springer

Published: 2015-11-14

Total Pages: 295

ISBN-13: 1493929690

DOWNLOAD EBOOK

This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE


Algorithms and Computation

Algorithms and Computation

Author: Peter Eades

Publisher: Springer Science & Business Media

Published: 2001-12-05

Total Pages: 800

ISBN-13: 3540429859

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 12th International Conference on Algorithms and Computation, ISAAC 2001, held in Christchurch, New Zealand in December 2001. The 62 revised full papers presented together with three invited papers were carefully reviewed and selected from a total of 124 submissions. The papers are organized in topical sections on combinatorial generation and optimization, parallel and distributed algorithms, graph drawing and algorithms, computational geometry, computational complexity and cryptology, automata and formal languages, computational biology and string matching, and algorithms and data structures.


Discrete and Computational Geometry

Discrete and Computational Geometry

Author: Boris Aronov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 847

ISBN-13: 3642555667

DOWNLOAD EBOOK

An impressive collection of original research papers in discrete and computational geometry, contributed by many leading researchers in these fields, as a tribute to Jacob E. Goodman and Richard Pollack, two of the ‘founding fathers’ of the area, on the occasion of their 2/3 x 100 birthdays. The topics covered by the 41 papers provide professionals and graduate students with a comprehensive presentation of the state of the art in most aspects of discrete and computational geometry, including geometric algorithms, study of arrangements, geometric graph theory, quantitative and algorithmic real algebraic geometry, with important connections to algebraic geometry, convexity, polyhedral combinatorics, the theory of packing, covering, and tiling. The book serves as an invaluable source of reference in this discipline.


Algorithms and Computation

Algorithms and Computation

Author: Hee-Kap Ahn

Publisher: Springer

Published: 2014-11-07

Total Pages: 769

ISBN-13: 3319130757

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 25th International Symposium on Algorithms and Computation, ISAAC 2014, held in Jeonju, Korea, in December 2014. The 60 revised full papers presented together with 2 invited talks were carefully reviewed and selected from 171 submissions for inclusion in the book. The focus of the volume in on the following topics: computational geometry, combinatorial optimization, graph algorithms: enumeration, matching and assignment, data structures and algorithms, fixed-parameter tractable algorithms, scheduling algorithms, computational complexity, computational complexity, approximation algorithms, graph theory and algorithms, online and approximation algorithms, and network and scheduling algorithms.


Hausdorff Approximations

Hausdorff Approximations

Author: Bl. Sendov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 380

ISBN-13: 9400906730

DOWNLOAD EBOOK

'Et moi ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point a1Ie.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.