Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules

Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules

Author: Hsinjin Edwin Yang

Publisher: William Andrew

Published: 2019-06-13

Total Pages: 358

ISBN-13: 0128115467

DOWNLOAD EBOOK

Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules describes the durability and reliability behavior of polymers used in Si-photovoltaic modules and systems, particularly in terms of physical aging and degradation process/mechanisms, characterization methods, accelerated exposure chamber and testing, module level testing, and service life prediction. The book compares polymeric materials to traditional materials used in solar applications, explaining the degradation pathways of the different elements of a photovoltaic module, including encapsulant, front sheet, back sheet, wires and connectors, adhesives, sealants, and more. In addition, users will find sections on the tests needed for the evaluation of polymer degradation and aging, as well as accelerated tests to aid in materials selection. As demand for photovoltaics continues to grow globally, with polymer photovoltaics offering significantly lower production costs compared to earlier approaches, this book will serve as a welcome resource on new avenues. - Provides comprehensive coverage of photovoltaic polymers, from fundamental degradation mechanisms, to specific case studies of durability and materials failure - Offers practical, actionable information in relation to service life prediction of photovoltaic modules and accelerated testing for materials selection - Includes up-to-date information and interpretation of safety regulations and testing of photovoltaic modules and materials


Polymers and the Environment

Polymers and the Environment

Author: G Scott

Publisher: Royal Society of Chemistry

Published: 2007-10-31

Total Pages: 146

ISBN-13: 1847551726

DOWNLOAD EBOOK

As environmental performance becomes increasingly important, the development of man-made polymers and their associated benefits has been overshadowed by problems relating to their ultimate disposal. In the light of wider acceptance of polymers for use in high technology applications, Polymers and the Environment aims to redress the balance. The book reviews the properties and industrial applications of polymers and discusses their environmental benefits compared with traditional materials. It also addresses the issues of polymer durability, recycling processes to aid waste minimization and biodegradable polymers. This text is intended to introduce the non-specialist reader to the benefits and limitations of polymeric materials from an environmental viewpoint, and will prove a useful book for both students and professionals.


Polymer Durability

Polymer Durability

Author: Roger Lee Clough

Publisher:

Published: 1996

Total Pages: 736

ISBN-13:

DOWNLOAD EBOOK

Provides a comprehensive overview of the science of polymer durability. Discusses the molecular mechanisms of polymer aging and deterioration, emphasizing UV and thermal exposure environments. Describes a variety of analytical techniques for studying degradation, with special emphasis on chemiluminescence. Covers advances in the use of additives and other approaches for enhancing polymer stability. Reviews mechanisms and applications of major classes of stabilizers, and discusses the problem of stabilizer migration and loss. Examines new methods for predicting the aging rate and lifetime of a material.


Long-Term Durability of Polymeric Matrix Composites

Long-Term Durability of Polymeric Matrix Composites

Author: Kishore V. Pochiraju

Publisher: Springer Science & Business Media

Published: 2011-09-25

Total Pages: 681

ISBN-13: 1441993088

DOWNLOAD EBOOK

Long-Term Durability of Polymeric Matrix Composites presents a comprehensive knowledge-set of matrix, fiber and interphase behavior under long-term aging conditions, theoretical modeling and experimental methods. This book covers long-term constituent behavior, predictive methodologies, experimental validation and design practice. Readers will also find a discussion of various applications, including aging air craft structures, aging civil infrastructure, in addition to engines and high temperature applications.


Polymer Electrolyte Fuel Cell Durability

Polymer Electrolyte Fuel Cell Durability

Author: Felix N. Büchi

Publisher: Springer Science & Business Media

Published: 2009-02-08

Total Pages: 489

ISBN-13: 038785536X

DOWNLOAD EBOOK

This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on–off and/or high power–low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.


Polymer Durability and Radiation Effects

Polymer Durability and Radiation Effects

Author: Roger A. Assink

Publisher:

Published: 2008

Total Pages: 394

ISBN-13:

DOWNLOAD EBOOK

The utilization of polymeric materials and their optimization for high performance applications requires a detailed understanding of their degradation sensitivities, and the various features affecting durability. This book provides an overview of the current trends in this research field. Topics are the latest concepts related to material lifetime prediction methodologies, new insight into degradation mechanisms in radiation environments, and how the knowledge of degradation processes can be applied to the design of materials with improved performance. Similarly of interest are appropriate analytical characterization techniques that are fundamental to all areas of polymer degradation and optimization studies. This book discusses the overlapping performance interests in a range of existing and developing applications. The audience will be polymer chemists and material engineers dealing with polymer design, testing and durability issues. The market will range from academia, to large research institutes and industry.


Handbook of Polymer Degradation

Handbook of Polymer Degradation

Author: S. Halim Hamid

Publisher: CRC Press

Published: 2000-06-30

Total Pages: 800

ISBN-13: 1482270188

DOWNLOAD EBOOK

Covers recent advances in polymer degradation and stabilization. Focuses on the basics of photo- and bio-degradability. Delineates special and general environmental parameters such as solar irradiation, temperature, and agrochemical exposure. Surveys plastic waste disposal strategies such as recycling, incineration, chemical recovery by pyrolysis, and source reduction.


Polymer Electrolyte Fuel Cell Degradation

Polymer Electrolyte Fuel Cell Degradation

Author: Matthew M. Mench

Publisher: Academic Press

Published: 2012

Total Pages: 474

ISBN-13: 0123869366

DOWNLOAD EBOOK

For full market implementation of PEM fuel cells to become a reality, two main limiting technical issues must be overcome- cost and durability. This cutting-edge volume directly addresses the state-of-the-art advances in durability within every fuel cell stack component. [...] chapters on durability in the individual fuel cell components -- membranes, electrodes, diffusion media, and bipolar plates -- highlight specific degradation modes and mitigation strategies. The book also includes chapters which synthesize the component-related failure modes to examine experimental diagnostics, computational modeling, and laboratory protocol"--Back cover.