Polycrystalline And Amorphous Thin Films And Devices

Polycrystalline And Amorphous Thin Films And Devices

Author: Lawrence Kazmerski

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 321

ISBN-13: 0323156045

DOWNLOAD EBOOK

Polycrystalline and Amorphous Thin Films and Devices is a compilation of papers that discusses the electronic, optical, and physical properties of thin material layers and films. This compilation reviews the different applications of thin films of various materials used as protective and optical coatings, thermal transfer layers, and selective membranes from submicron- area VLSI memory units to large-area energy conservation devices. Some papers discuss the basic properties, such as growth, structure, electrical, and optical mechanisms that are encountered in amorphous and polycrystalline thin semiconductor films. For example, experiments on electronic structure of dislocations have led to a model for the intrinsic properties of grain boundaries in polycrystalline semiconductor thin films that can have an impact on the designs of high-efficiency, thin-film solar cells. Other papers review the problems encountered in these thin layers in active semiconductor devices and passive technologies. Techniques in film growth and control variables of source, substrate temperature, and substrate properties will determine the successful performance of the devices installed with these thin film layers. This compilation can prove valuable for chemists, materials engineers, industrial technologists, and researchers in thin-film technology.


Science and Technology of Thin Films

Science and Technology of Thin Films

Author: F. C. Matacotta

Publisher: World Scientific

Published: 1995

Total Pages: 369

ISBN-13: 9810221932

DOWNLOAD EBOOK

This book brings together detailed discussions by leading experts on the various innovative aspects of thin films growth, deposition and characterization techniques, and new thin film materials and devices. It addresses through the different viewpoints of the contributors, the major problem of thin films science - the relation between the energy of the condensing species and the resulting properties of the films. Some of the issues considered include energetic condensation, bombardment stabilization, pulsed electron beam ablation, orientation and self-organization of organic, ferroelectric and nanoparticle thin films. Several chapters focus on applications such as the recent developments in organic optoelectronics, large area electronic technology and superconducting thin film devices.


Physics of Thin Films

Physics of Thin Films

Author: Maurice H. Francombe

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 385

ISBN-13: 1483144933

DOWNLOAD EBOOK

Physics of Thin Films: Advances in Research and Development, Volume 6 reviews the rapid progress that has been made in research and development concerning the physics of thin films, with emphasis on metallic films. Topics covered include anodic oxide films, thin metal films and wires, and multilayer magnetic films. This volume is comprised of five chapters and begins with a discussion on the dielectric properties and the technique of plasma anodization which are relevant to the applications of anodic oxide films in electronic devices. Conduction, polarization, and dielectric breakdown effects are also considered. The next chapter examines studies on size-dependent electrical conduction in thin metal films and wires, paying particular attention to both classical and quantum size effects and some of the anisotropic characteristics of epitaxial metal films. The reader is then introduced to the optical properties of metal films and interactions in multilayer magnetic films. This text concludes with a chapter that looks at diffusion in metallic films and presents experimental results for phase-forming systems, miscible systems, and lateral diffusion. This monograph will be of value to students and practitioners of physics, especially those interested in thin films.


Metallic Films for Electronic, Optical and Magnetic Applications

Metallic Films for Electronic, Optical and Magnetic Applications

Author: Katayun Barmak

Publisher: Woodhead Publishing

Published: 2014-02-13

Total Pages: 671

ISBN-13: 085709629X

DOWNLOAD EBOOK

Metallic films play an important role in modern technologies such as integrated circuits, information storage, displays, sensors, and coatings. Metallic Films for Electronic, Optical and Magnetic Applications reviews the structure, processing and properties of metallic films. Part one explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy. This part also encompasses the processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations. Chapters in part two focus on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties. Metallic Films for Electronic, Optical and Magnetic Applications is a technical resource for electronics components manufacturers, scientists, and engineers working in the semiconductor industry, product developers of sensors, displays, and other optoelectronic devices, and academics working in the field. - Explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy - Discusses processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations - Focuses on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties


X-Ray Diffraction by Polycrystalline Materials

X-Ray Diffraction by Polycrystalline Materials

Author: René Guinebretière

Publisher: John Wiley & Sons

Published: 2013-03-01

Total Pages: 290

ISBN-13: 1118613953

DOWNLOAD EBOOK

This book presents a physical approach to the diffraction phenomenon and its applications in materials science. An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to quantitative microstructural analysis of powders or epitaxial thin films on the basis of X-ray diffraction. Given the comprehensive coverage offered by this title, anyone involved in the field of X-ray diffraction and its applications will find this of great use.


Handbook of Industrial Diamonds and Diamond Films

Handbook of Industrial Diamonds and Diamond Films

Author: Mark A. Prelas

Publisher: Routledge

Published: 2018-12-19

Total Pages: 1454

ISBN-13: 1351442481

DOWNLOAD EBOOK

Examines both mined and synthetic diamonds and diamond films. The text offers coverage on the use of diamond as an engineering material, integrating original research on the science, technology and applications of diamond. It discusses the use of chemical vapour deposition grown diamonds in electronics, cutting tools, wear resistant coatings, thermal management, optics and acoustics, as well as in new products.


Handbook of Deposition Technologies for Films and Coatings

Handbook of Deposition Technologies for Films and Coatings

Author: Peter M. Martin

Publisher: William Andrew

Published: 2009-12-01

Total Pages: 932

ISBN-13: 0815520328

DOWNLOAD EBOOK

This 3e, edited by Peter M. Martin, PNNL 2005 Inventor of the Year, is an extensive update of the many improvements in deposition technologies, mechanisms, and applications. This long-awaited revision includes updated and new chapters on atomic layer deposition, cathodic arc deposition, sculpted thin films, polymer thin films and emerging technologies. Extensive material was added throughout the book, especially in the areas concerned with plasma-assisted vapor deposition processes and metallurgical coating applications.


The Materials Science of Thin Films

The Materials Science of Thin Films

Author: Milton Ohring

Publisher: Academic Press

Published: 1992

Total Pages: 744

ISBN-13: 9780125249904

DOWNLOAD EBOOK

Prepared as a textbook complete with problems after each chapter, specifically intended for classroom use in universities.


Chemisorption And Reactions On Metallic Films V2

Chemisorption And Reactions On Metallic Films V2

Author: J Anderson

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 336

ISBN-13: 0323155316

DOWNLOAD EBOOK

Chemisorption and Reactions on Metallic Films, Volume 2 is a four-chapter text that describes the role of evaporated metal films in advancing the understanding of the metal-gas interface chemistry and in understanding of adsorption and catalysis at metal surfaces. This volume first describes film structure and properties, particularly of random polycrystalline films, as well as the concepts of the adsorption and kinetic phenomena. The topic is followed by an overview of the main classes of catalytic reactions that have been studied over evaporated metal film catalysts. A chapter explores the preparation, characterization, structure, and surface properties of alloy films. The theory of the oxidation of metals and the advantages and disadvantages of using thin metal films in oxidation work are considered in the concluding chapter, along with a brief discussion on their use in kinetic and mechanistic studies. Research scientists and graduate students who are interested in the fundamentals of adsorption and catalysis will find this volume invaluable.


Ceramic Microstructures

Ceramic Microstructures

Author: Antoni P. Tomsia

Publisher: Springer Science & Business Media

Published: 1998-04-30

Total Pages: 876

ISBN-13: 9780306458170

DOWNLOAD EBOOK

This volume, titled Proceedings of the International Materials Symposium on Ce ramic Microstructures: Control at the Atomic Level summarizes the progress that has been achieved during the past decade in understanding and controlling microstructures in ceram ics. A particular emphasis of the symposium, and therefore of this volume, is advances in the characterization, understanding, and control of micro structures at the atomic or near-atomic level. This symposium is the fourth in a series of meetings, held every ten years, devoted to ceramic microstructures. The inaugural meeting took place in 1966, and focussed on the analysis, significance, and production of microstructure; the symposium emphasized the need for, and importance of characterization in achieving a more complete understanding of the physical and chemical characteristics of ceramics. A consensus emerged at that meeting on the critical importance of characterization in achieving a more complete understanding of ceramic properties. That point of view became widely accepted in the ensuing decade. The second meeting took place in 1976 at a time of world-wide energy shortages and thus emphasized energy-related applications of ceramics, and more specifically, microstructure-property relationships of those materials. The third meeting, held in 1986, was devoted to the role that interfaces played both during processing, and in influencing the ultimate properties of single and polyphase ceramics, and ceramic-metal systems.