This report presents a cost analysis of Polycarbonate (PC) production from bisphenol A (BPA) and phosgene. The process examined is a typical interfacial process. In this process, BPA, dissolved in an aqueous solution, is reacted with phosgene, in an organic solution, at the interface of the two-phase mixture. The carbonate oligomers produced are then polycondensed to Polycarbonate resin. This report was developed based essentially on the following reference(s): "Polycarbonates", Ullmann's Encyclopedia of Industrial Chemistry, 7th edition Keywords: Thermoplastic Polymer, Interfacial Polymerization, Polycondensation
"America's Children and the Environment (ACE)" is EPA's report presenting data on children's environmental health. ACE brings together information from a variety of sources to provide national indicators in the following areas: Environments and Contaminants, Biomonitoring, and Health. Environments and Contaminants indicators describe conditions in the environment, such as levels of air pollution. Biomonitoring indicators include contaminants measured in the bodies of children and women of child-bearing age, such as children's blood lead levels. Health indicators report the rates at which selected health outcomes occur among U.S. children, such as the annual percentage of children who currently have asthma. Accompanying each indicator is text discussing the relevance of the issue to children's environmental health and describing the data used in preparing the indicator. Wherever possible, the indicators are based on data sources that are updated in a consistent manner, so that indicator values may be compared over time.
This report presents a cost analysis of Bisphenol A (BPA) production from phenol and acetone. In this process, BPA is produced by the condensation reaction of acetone with phenol. The reaction is catalyzed by hydrogen chloride. This report examines one-time costs associated with the construction of a United States-based plant and the continuing costs associated with the daily operation of such a plant. More specifically, it discusses: * Capital Investment, broken down by: - Total fixed capital required, divided in production unit (ISBL); infrastructure (OSBL) and contingency - Alternative perspective on the total fixed capital, divided in direct costs, indirect costs and contingency - Working capital and costs incurred during industrial plant commissioning and start-up * Production cost, broken down by: - Manufacturing variable costs (raw materials, utilities) - Manufacturing fixed costs (maintenance costs, operating charges, plant overhead, local taxes and insurance) - Depreciation and corporate overhead costs * Raw materials consumption, products generation and labor requirements * Process block flow diagram and description of industrial site installations (production unit and infrastructure) Keywords: Carbolic Acid, Propanone, Hooker Chemical, Occidental Chemical, OxyChem
Winner in its first edition of the Best New Undergraduate Textbook by the Professional and Scholarly Publishing Division of the American Association of Publishers (AAP), Kosky, et al is the first text offering an introduction to the major engineering fields, and the engineering design process, with an interdisciplinary case study approach. It introduces the fundamental physical, chemical and material bases for all engineering work and presents the engineering design process using examples and hands-on projects. Organized in two parts to cover both the concepts and practice of engineering: Part I, Minds On, introduces the fundamental physical, chemical and material bases for all engineering work while Part II, Hands On, provides opportunity to do design projects An Engineering Ethics Decision Matrix is introduced in Chapter 1 and used throughout the book to pose ethical challenges and explore ethical decision-making in an engineering context Lists of "Top Engineering Achievements" and "Top Engineering Challenges" help put the material in context and show engineering as a vibrant discipline involved in solving societal problems New to this edition: Additional discussions on what engineers do, and the distinctions between engineers, technicians, and managers (Chapter 1) New coverage of Renewable Energy and Environmental Engineering helps emphasize the emerging interest in Sustainable Engineering New discussions of Six Sigma in the Design section, and expanded material on writing technical reports Re-organized and updated chapters in Part I to more closely align with specific engineering disciplines new end of chapter excercises throughout the book
Carbon fiber is an oft-referenced material that serves as a means to remove mass from large transport infrastructure. Carbon fiber composites, typically plastics reinforced with the carbon fibers, are key materials in the 21st century and have already had a significant impact on reducing CO2 emissions. Though, as with any composite material, the interface where each component meets, in this case the fiber and plastic, is critical to the overall performance. This text summarizes recent efforts to manipulate and optimize the interfacial interaction between these dissimilar materials to improve overall performance.
This book contains eight chapters that discuss the manufacturing methods, surface treatment, composite interfaces, microstructure-property relationships with underlying fundamental physical and mechanical principles, and applications of carbon fibers and their composites. Recently, carbon-based materials have received much attention for their many potential applications. The carbon fibers are very strong, stiff, and lightweight, enabling the carbon materials to deliver improved performance in several applications such as aerospace, sports, automotive, wind energy, oil and gas, infrastructure, defense, and semiconductors. However, the use of carbon fibers in cost-sensitive, high-volume industrial applications is limited because of their relatively high costs. However, its production is expected to increase because of its widespread use in high-volume industrial applications; therefore, the methods used for manufacturing carbon fibers and carbon-fiber-reinforced composites and their structures and characteristics need to be investigated.
This book is the first to deal with the important topic of the fire behaviour of fibre reinforced polymer composite materials. The book covers all of the key issues on the behaviour of composites in a fire. Also covered are fire protection materials for composites, fire properties of nanocomposites, fire safety regulations and standards, fire test methods, and health hazards from burning composites.
According to the World Health Organization, the epidemic of global obesity has nearly tripled since 1975. In 2016, more than 1.9 billion adults were overweight, over 650 million of which were obese. Being overweight and obese has been linked to a number of non-communicable, chronic diseases. Pathophysiology of Obesity-Induced Health Complications is a compilation of review articles dedicated to describe co-morbidities associated with obesity. The wide range that is covered is of significant interest to basic research scientists, clinicians and graduate students who are engaged in studying obesity-induced health complications. Furthermore, this book highlights the potential of novel approaches for the prevention and treatment of obesity and its related illnesses. Nineteen articles in this book are organized in four sections that are designed to provide an overview of obesity-induced health complications. The first section serves as an introductory section on the prevalence, causes, consequences, treatments and preventive approaches for obesity. Section two covers the metabolic disturbances and inflammation due to obesity. The third section is focused on neurological and visceral complications as a consequence of obesity. The final section covers strategies for the prevention of obesity-induced complications. The book illustrates that obesity can result in a diverse range of pathophysiological conditions that adversely affect health.
This book presents the proceedings of the IUPESM World Congress on Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand, and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.
Volume 45 of Reviews in Mineralogy and Geochemistry is a new and expanded update of Volume 4 from 1977. Most of the material in this volume is entirely new, and Natural Zeolites: Occurrence, Properties, Applications presents a fresh and expanded look at many of the subjects contained in Volume 4. There has been an explosion in our knowledge of the crystal chemistry and structures of natural zeolites (Chapters 1 and 2), due in part to the now-common Rietveld method that allows treatment of powder diffraction data. Studies on the geochemistry of natural zeolites have also greatly increased, partly as a result of the interests related to the disposal of radioactive wastes, and Chapters 3, 4, 5, 13, and 14 detail the latest results in this important area. Until the latter part of the 20th century, zeolites were often looked upon as a geological curiosity, but they are now known to be widespread throughout the world in sedimentary and igneous deposits and in soils (Chapters 6-12). The application of natural zeolites has greatly expanded since the first zeolite volume. Chapter 15 details the use of natural zeolites for removal of ammonium ions, heavy metals, radioactive cations, and organic molecules from natural waters, wastewaters, and soils. Similarly, Chapter 16 describes the use of natural zeolites as building blocks and cements in the building industry, Chapter 17 outlines their use in solar energy storage, heating, and cooling applications, and Chapter 18 describes their use in a variety of agricultural applications, including as soil conditioners, slow-release fertilizers, soil-less substrates, carriers for insecticides and pesticides, and remediation agents in contaminated soils.