Offers up-to-date technical information on current and potential pollution control and waste minimization practices, providing industry-specific case studies, techniques and models.
Covers elements of pollution prevention programs, identifying pollution prevention options for chemical processes, selecting the best pollution prevention options, and pollution prevention case study modules with solved problems. Suitable for use in short courses, training sessions, and as a supplementary text in university-based engineering design courses. 50 charts and tables.
This book defines environmental reaction engineering principles, including reactor design, for the development of processes that provide an environmental benefit. With regard to pollution prevention, the focus is primarily on new reaction and reactor technologies that minimize the production of undesirable side-products (pollutants), but the use of reaction engineering as a means of treating wastes that are produced through other means is also considered.First is a section on environmentally benign combustion. The three papers discuss methods of reducing the formation of PAHs and NOx, as well as other environmentally sensitive combustion products. The next section contains a collection of contributions that involve the use of a catalyst to support the reaction. Following this is a section on the use of supercritical fluid solvents as environmentally friendly media for chemical reactions. Finally, a series of papers is presented in which novel reactor designs are utilized to obtain product yields not possible in conventional reactor systems. These include the use of reactor-absorber systems, reactive distillation, and reactive membranes. The book concludes with a chapter contributed by the editors which discusses the educational aspects of pollution prevention. It is necessary for future generations of engineers to be trained to design processes that are inherently environmentally benign. This chapter assembles resource materials for educators which will spark the creative instincts of the researchers using the materials contained within this book to develop new resources for pollution prevention education. The broad spectrum of topics included in this book indicates the diversity of this area, and the vibrant nature of the ongoing research. The possibilities of producing desirable products without the formation of waste byproducts are bounded only by the creativity of the reaction engineer.
As many industries are beginning to learn, pollution prevention technologies offer more than just a way to comply with regulations, or even to “do the right thing.” It also makes smart business sense. The authors of this book, both veterans of DuPont’s in-house waste reduction team, have put together a “how-to” guide for locating and implementing the best pollution prevention strategies for particular manufacturing processes. The book codifies elements of fundamental pollution prevention knowledge that are “easily understood and broadly applicable,” across a wide range of industries. At the heart of the book is what the authors call the “10-Step Method for Engineering Evaluations of Pollution Prevention Methods,” which breaks down the process to such simple steps as defining problems, setting goals, and identifying, defining, and evaluating alternative strategies.
The environmental impact of industrial waste is one of the most serious challenges facing the chemical process industries. From a focus on end-of-pipe treatment in the 1970s, chemical manufacturers have increasinglyimplemented pollution prevention policies in which pollutants are mitigated at the source or separated and recovered and then reused or sold. This book is the first to present systematic techniques for cost-effective pollution prevention, altering what has been an art that depends on experience and subjective opinion into a science rooted in fundamental engineering principles and process integration. Step-by-step procedures are presented that are widely applicable to the chemical, petrochemical, petroleum, pharmaceutical, food, and metals industries. Various levels of sophistication ranging from graphical methods to algebraic procedures and mathematical optimization, numerous applications and case studies, and integrated software for optimizing waste recovery systems make Pollution Prevention through Process Integration: Systematic Design Tools a must read for a wide spectrum of practicing engineers, environmental scientists, plant managers, advanced undergraduate and graduate students, and researchers in the areas of pollution prevention andprocess integration. - Allows the reader to establish pollution-prevention targets for a process and then develop implementable, cost-effective solutions - Contains step-by-step procedures that can be applied to environmental problems in a wide variety of process industries - Integrates pollution prevention with other process objectives - Author is internationally recognized for pioneering work in developing mass integration science and technology
Handbook of Advanced Approaches towards Pollution Prevention and Control, Volume Two: Legislative Measures and Sustainability for Pollution Prevention and Control condenses all relevant information on pollution prevention and control in a single source. This handbook (Volume Two of Two) covers the principals of pollution prevention and control technologies, recent advances in pollution prevention, control technologies and their sustainability, modernization in pollution prevention and control technologies for future and next generation of pollution prevention and control technologies. The book is an indispensable resource for researchers and academic staff in chemical and process engineering, safety engineering, environmental engineering, biotechnology, and materials engineering. - Provides in-depth information on the principles and advances in pollution prevention and control practices - Discusses emerging technologies and processes for advanced pollution prevention and control - Presents developments on the use of the assessment models as tools to support the research and applications of different technologies and processes - Provides history, fundamentals, state-of-the-art, and future trends - Edited by expert team of world-class editors
With growing global competition, the process industries must spare no effort in insuring continuous process improvement in terms of Increasing profitability; Conservation of resources and Prevention of pollution. The question is how can engineers achieve these goals for a given process with numerous units and streams? Until recently conventional approaches to process design and operation put emphasis only on individual units and parts of the process. A more powerful integrated approach was lacking. The new field of Process Integration looks towards the processing plant as a whole in its attempt to find solutions and improvements. Research over the past two decades has resulted in many techniques that allow engineers to better understand complex facilities and significantly enhance their performance. This textbook presents a comprehensive and authoritative treatment of the concepts, tools and applications of Process Integration. Emphasis is given to systematic ways of analyzing process performance. Graphical, algebraic and mathematical procedures are presented in detail. In addition to covering the fundamentals of the subject, the book also includes numerous case studies and examples that illustrate how Process Integration is solving actual industrial problems. - Systematic methodology for analyzing the process as an integrated system, identifying global insights of the process, and generating optimum strategies and solutions - Proper mix of fundamental principles, insightful tools, and industrial applications - Generic techniques that are applicable to a wide variety of processing facilities - Packed with case studies, practical tools, charts, tables, and performance criteria - Extensive bibliography to provide ready access to process integration literature - Excellent review of state-of-the-art technology, development trends, and future research directions
A chemical engineer's guide to managing and minimizing environmental impact. Chemical processes are invaluable to modern society, yet they generate substantial quantities of wastes and emissions, and safely managing these wastes costs tens of millions of dollars annually. Green Engineering is a complete professional's guide to the cost-effective design, commercialization, and use of chemical processes in ways that minimize pollution at the source, and reduce impact on health and the environment. This book also offers powerful new insights into environmental risk-based considerations in design of processes and products. First conceived by the staff of the U.S. Environmental Protection Agency, Green Engineering draws on contributions from many leaders in the field and introduces advanced risk-based techniques including some currently in use at the EPA. Coverage includes: Engineering chemical processes, products, and systems to reduce environmental impacts Approaches for evaluating emissions and hazards of chemicals and processes Defining effective environmental performance targets Advanced approaches and tools for evaluating environmental fate Early-stage design and development techniques that minimize costs and environmental impacts In-depth coverage of unit operation and flowsheet analysis The economics of environmental improvement projects Integration of chemical processes with other material processing operations Lifecycle assessments: beyond the boundaries of the plant Increasingly, chemical engineers are faced with the challenge of integrating environmental objectives into design decisions. Green Engineering gives them the technical tools they need to do so.
This book explores sustainability engineering through the lens of the manufacturing and chemical process industries to elucidate the safe and economic implementation of process designs used to transform raw materials into useful finished products. The author applies the tenets of sustainability science to develop an engineering methodology that supports the perpetual availability of raw materials through recycling/reuse/repurposing, incorporates inexhaustible supplies, such as solar energy and municipal waste, and encompasses the husbandry of these resources in a manner that minimizes negative environmental impacts. Anyone involved in the design or manufacture of chemicals, or the upgrade of existing manufacturing processes, will benefit from this book’s suggestions for identifying improvement options, while adding the pivotal aspect of sustainability to the usual cost and safety equation optimization elements.