This book is both a coherent exposition and an in-depth mathematical analysis of polarized light in fiber optics. It also is an essential reference for scientists, optical and electrical engineers, optical physicists, and researchers working in the field of fiber optics and in related optical fields. Upper-level undergraduate, graduate, and continuing-education students will refer to it again and again.
This book covers the basic concepts and methods involved in polarization of light, and features important methods of analysis such as Jones matrices, Stokes parameters, and Poincaré sphere. It provides the background needed to understand the workings of, and to design, various photonic devices, including Faraday rotators, inline fiber optic components such as polarizers, wave plates, and polarization controllers, and polarimetric sensors such as fiber optic current sensors. Birefringence and the phenomenon of polarization mode dispersion (PMD) in single-mode fibers are also covered. The discussion of concepts is succinct, and the presentation of methods includes concrete examples, making the book an ideal text for students and a useful resource for engineers.
This book is a compilation of works presenting recent developments and practical applications in optical fiber technology. It contains 13 chapters from various institutions that represent global research in various topics such as scattering, dispersion, polarization interference, fuse phenomena and optical manipulation, optical fiber laser and sensor applications, passive optical network (PON) and plastic optical fiber (POF) technology. It provides the reader with a broad overview and sampling of the innovative research on optical fiber technologies.
A practical handbook covering polarization measurement and control in optical communication and sensor systems In Polarization Measurement and Control in Optical Fiber Communication and Sensor Systems, the authors deliver a comprehensive exploration of polarization related phenomena, as well as the methodologies, techniques, and devices used to eliminate, mitigate, or compensate for polarization related problems and impairments. The book also discusses polarization-related parameter measurement and characterization technologies in optical fibers and fiber optic devices and the utilization of polarization to solve problems or enable new capabilities in communications, sensing, and measurement systems. The authors provide a practical and hands-on treatment of the information that engineers, scientists, and graduate students must grasp to be successful in their everyday work. In addition to coverage of topics ranging from the use of polarization analysis to obtain instantaneous spectral information on light sources to the design of novel fiber optic gyroscopes for rotation sensing, Polarization Measurement and Control in Optical Fiber Communication and Sensor Systems offers: A thorough introduction to polarization in optical fiber studies, including a history of polarization in optical fiber communication and sensor systems. Comprehensive discussions of the fundamentals of polarization, including the effects unique to optical fiber systems, as well as extensive coverage Jones and Mueller matrix calculus for polarization analysis. In-depth treatments of active polarization controlling devices for optical fiber systems, including polarization controllers, scramblers, emulators, switches and binary polarization state generators Fulsome explorations of passive polarization management devices, including polarizers, polarization beam splitters/displacers, wave-plates, Faraday rotators, and depolarizers. Extensive review of polarization measurement techniques and devices, including time-division, amplitude-division, and wave-front division Stokes polarimeters, as well as various Mueller matrix polarimeters for PMD, PDL and birefringence measurements. Premiere of binary polarization state analyzers and binary Mueller matrix polarimeters pioneered by the authors, including their applications for highly sensitive PMD, PDL, and birefringence measurements. Comprehensive discussion on distributed polarization analysis techniques developed by the authors, including their applications in solving real world problems. Detailed descriptions of high accuracy polarimetric fiber optic electric current and magnetic field sensors. Perfect for professional engineers, scientists, and graduate students studying fiber optics, Polarization Measurement and Control in Optical Fiber Communication and Sensor Systems enables one to quickly grasp extensive knowledge and latest development of polarization in optical fibers and will earn a place in the libraries of professors and teachers of photonics and related disciplines.
A tutorial introduction to fiber optics, which explains fundamental concepts of fiber optics, components and systems with minimal math. With more than 100,000 copies in print, Understanding Fiber Optics has been widely used in the classroom, for self study, and in corporate training since the first edition was published in 1987. This is a reprint of the 5th edition, originally published by Pearson Education and now available at low cost from Laser Light Press.
Polarized Light and Optical Systems presents polarization optics for undergraduate and graduate students in a way which makes classroom teaching relevant to current issues in optical engineering. This curriculum has been developed and refined for a decade and a half at the University of Arizona’s College of Optical Sciences. Polarized Light and Optical Systems provides a reference for the optical engineer and optical designer in issues related to building polarimeters, designing displays, and polarization critical optical systems. The central theme of Polarized Light and Optical Systems is a unifying treatment of polarization elements as optical elements and optical elements as polarization elements. Key Features Comprehensive presentation of Jones calculus and Mueller calculus with tables and derivations of the Jones and Mueller matrices for polarization elements and polarization effects Classroom-appropriate presentations of polarization of birefringent materials, thin films, stress birefringence, crystal polarizers, liquid crystals, and gratings Discussion of the many forms of polarimeters, their trade-offs, data reduction methods, and polarization artifacts Exposition of the polarization ray tracing calculus to integrate polarization with ray tracing Explanation of the sources of polarization aberrations in optical systems and the functional forms of these polarization aberrations Problem sets to build students’ problem-solving capabilities.
This book provides a comprehensive treatment of the field of modern fiber optics, beginning with the basics of the field summarized in an introductory chapter. Expert contributors then topics such as polarization effects in optical fibers; photonic crystal fibers; highly-doped optical fibers; non-linear effects; amplification and lasing i
Fiber Optic Measurement Techniques is an indispensable collection of key optical measurement techniques essential for developing and characterizing today's photonic devices and fiber optic systems. The book gives comprehensive and systematic descriptions of various fiber optic measurement methods with the emphasis on the understanding of optoelectronic signal processing methodologies, helping the reader to weigh up the pros and cons of each technique and establish their suitability for the task at hand. Carefully balancing descriptions of principle, operations and optoelectronic circuit implementation, this indispensable resource will enable the engineer to: - Understand the implications of various measurement results and system performance qualifications - Characterize modern optical systems and devices - Select optical devices and subsystems in optical network design and implementation - Design innovative instrumentations for fiber optic systems This book brings together in one volume the fundamental principles with the latest techniques, making it a complete resource for the optical and communications engineer developing future optical devices and fiber optic systems. "Optical fiber communication systems and networks constitute the core of the telecom infrastructure of the information society worldwide. Accurate knowledge of the properties of the contituent components, and of the performance of the subsystems and systems must be obtained in order to ensure reliable transmission, distribution, and delivery of information. This book is an authoritative and comprehensive treatment of fiber-optic measurement techniques, including not only fundamental principles and methodologies but also various instrumentations and practical implementations. It is an excellent up-to-date resource and reference for the academic and industrial researcher as well as the field engineer in manufacturing and network operations." –Dr. Tingye Li, AT&T Labs (retired)Rongqing Hui received his PhD in Electrical Engineering from Politecnico di Torino, Italy in 1993. He is currently a tenured professor in the department of Electrical Engineering and Computer Science at the University of Kansas. He has published more than 90 refereed technical papers in the area of fiber-optic communications and holds 13 patents. Dr. Hui currently serves as an Associate Editor of IEEE Transactions on Communications.Maurice O'Sullivan has worked for Nortel for a score of years, at first in the optical cable business, developing factory-tailored metrology for optical fiber, but, in the main, in the optical transmission business developing, modeling and verifying physical layer designs & performance of Nortel's line and highest rate transmission product including OC-192, MOR, MOR+, LH1600G, eDCO and eDC40G. He holds a Ph.D. in physics (high resolution spectroscopy) from the University of Toronto, is a Nortel Fellow and has been granted more than 30 patents. - The only book to combine explanations of the basic principles with latest techniques to enable the engineer to develop photonic systems of the future - Careful and systematic presentation of measurement methods to help engineers to choose the most appropriate for their application - The latest methods covered, such as real-time optical monitoring and phase coded systems and subsystems, making this the most up-to-date guide to fiber optic measurement on the market