Point-of-Interest Recommendation in Location-Based Social Networks

Point-of-Interest Recommendation in Location-Based Social Networks

Author: Shenglin Zhao

Publisher: Springer

Published: 2018-07-13

Total Pages: 110

ISBN-13: 9811313490

DOWNLOAD EBOOK

This book systematically introduces Point-of-interest (POI) recommendations in Location-based Social Networks (LBSNs). Starting with a review of the advances in this area, the book then analyzes user mobility in LBSNs from geographical and temporal perspectives. Further, it demonstrates how to build a state-of-the-art POI recommendation system by incorporating the user behavior analysis. Lastly, the book discusses future research directions in this area. This book is intended for professionals involved in POI recommendation and graduate students working on problems related to location-based services. It is assumed that readers have a basic knowledge of mathematics, as well as some background in recommendation systems.


Recommender Systems for Location-based Social Networks

Recommender Systems for Location-based Social Networks

Author: Panagiotis Symeonidis

Publisher: Springer Science & Business Media

Published: 2014-02-08

Total Pages: 109

ISBN-13: 1493902865

DOWNLOAD EBOOK

Online social networks collect information from users' social contacts and their daily interactions (co-tagging of photos, co-rating of products etc.) to provide them with recommendations of new products or friends. Lately, technological progressions in mobile devices (i.e. smart phones) enabled the incorporation of geo-location data in the traditional web-based online social networks, bringing the new era of Social and Mobile Web. The goal of this book is to bring together important research in a new family of recommender systems aimed at serving Location-based Social Networks (LBSNs). The chapters introduce a wide variety of recent approaches, from the most basic to the state-of-the-art, for providing recommendations in LBSNs. The book is organized into three parts. Part 1 provides introductory material on recommender systems, online social networks and LBSNs. Part 2 presents a wide variety of recommendation algorithms, ranging from basic to cutting edge, as well as a comparison of the characteristics of these recommender systems. Part 3 provides a step-by-step case study on the technical aspects of deploying and evaluating a real-world LBSN, which provides location, activity and friend recommendations. The material covered in the book is intended for graduate students, teachers, researchers, and practitioners in the areas of web data mining, information retrieval, and machine learning.


Computing with Spatial Trajectories

Computing with Spatial Trajectories

Author: Yu Zheng

Publisher: Springer Science & Business Media

Published: 2011-10-02

Total Pages: 328

ISBN-13: 1461416299

DOWNLOAD EBOOK

Spatial trajectories have been bringing the unprecedented wealth to a variety of research communities. A spatial trajectory records the paths of a variety of moving objects, such as people who log their travel routes with GPS trajectories. The field of moving objects related research has become extremely active within the last few years, especially with all major database and data mining conferences and journals. Computing with Spatial Trajectories introduces the algorithms, technologies, and systems used to process, manage and understand existing spatial trajectories for different applications. This book also presents an overview on both fundamentals and the state-of-the-art research inspired by spatial trajectory data, as well as a special focus on trajectory pattern mining, spatio-temporal data mining and location-based social networks. Each chapter provides readers with a tutorial-style introduction to one important aspect of location trajectory computing, case studies and many valuable references to other relevant research work. Computing with Spatial Trajectories is designed as a reference or secondary text book for advanced-level students and researchers mainly focused on computer science and geography. Professionals working on spatial trajectory computing will also find this book very useful.


Web Engineering

Web Engineering

Author: Maxim Bakaev

Publisher: Springer

Published: 2019-04-25

Total Pages: 599

ISBN-13: 3030192741

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 19th International Conference on Web Engineering, ICWE 2019, held in Daejeon, South Korea, in June 2019. The 26 full research papers and 9 short papers presented were carefully reviewed and selected from 106 submissions. Additionally, two demonstrations, four posters, and four contributions to the PhD symposium as well as five tutorials are included in this volume. The papers cover research areas such as Web mining and knowledge extraction, Web big data and Web data analytics, social Web applications and crowdsourcing, Web user interfaces, Web security and privacy, Web programming, Web services and computing, Semantic Web and linked open data applications, and Web application modeling and engineering.


Recommender System with Machine Learning and Artificial Intelligence

Recommender System with Machine Learning and Artificial Intelligence

Author: Sachi Nandan Mohanty

Publisher: John Wiley & Sons

Published: 2020-07-08

Total Pages: 448

ISBN-13: 1119711576

DOWNLOAD EBOOK

This book is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. It comprehensively covers the topic of recommender systems, which provide personalized recommendations of items or services to the new users based on their past behavior. Recommender system methods have been adapted to diverse applications including social networking, movie recommendation, query log mining, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. Recommendations in agricultural or healthcare domains and contexts, the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. This book illustrates how this technology can support the user in decision-making, planning and purchasing processes in agricultural & healthcare sectors.


Encyclopedia of GIS

Encyclopedia of GIS

Author: Shashi Shekhar

Publisher: Springer Science & Business Media

Published: 2007-12-12

Total Pages: 1392

ISBN-13: 038730858X

DOWNLOAD EBOOK

The Encyclopedia of GIS provides a comprehensive and authoritative guide, contributed by experts and peer-reviewed for accuracy, and alphabetically arranged for convenient access. The entries explain key software and processes used by geographers and computational scientists. Major overviews are provided for nearly 200 topics: Geoinformatics, Spatial Cognition, and Location-Based Services and more. Shorter entries define specific terms and concepts. The reference will be published as a print volume with abundant black and white art, and simultaneously as an XML online reference with hyperlinked citations, cross-references, four-color art, links to web-based maps, and other interactive features.


Big Data and Innovation in Tourism, Travel, and Hospitality

Big Data and Innovation in Tourism, Travel, and Hospitality

Author: Marianna Sigala

Publisher: Springer

Published: 2019-02-26

Total Pages: 227

ISBN-13: 9811363390

DOWNLOAD EBOOK

This book brings together multi-disciplinary research and practical evidence about the role and exploitation of big data in driving and supporting innovation in tourism. It also provides a consolidated framework and roadmap summarising the major issues that both researchers and practitioners have to address for effective big data innovation. The book proposes a process-based model to identify and implement big data innovation strategies in tourism. This process framework consists of four major parts: 1) inputs required for big data innovation; 2) processes required to implement big data innovation; 3) outcomes of big data innovation; and 4) contextual factors influencing big data exploitation and advances in big data exploitation for business innovation.


CIKM'13

CIKM'13

Author: CIKM 13 Conference Committee

Publisher:

Published: 2013-10-27

Total Pages: 938

ISBN-13: 9781450326964

DOWNLOAD EBOOK

CIKM'13: 22nd ACM International Conference on Information and Knowledge Management Oct 27, 2013-Nov 01, 2013 San Francisco, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.


Artificial Intelligence and Data Science in Recommendation System: Current Trends, Technologies and Applications

Artificial Intelligence and Data Science in Recommendation System: Current Trends, Technologies and Applications

Author: Abhishek Majumder

Publisher: Bentham Science Publishers

Published: 2023-08-16

Total Pages: 319

ISBN-13: 9815136755

DOWNLOAD EBOOK

Artificial Intelligence and Data Science in Recommendation System: Current Trends, Technologies and Applications captures the state of the art in usage of artificial intelligence in different types of recommendation systems and predictive analysis. The book provides guidelines and case studies for application of artificial intelligence in recommendation from expert researchers and practitioners. A detailed analysis of the relevant theoretical and practical aspects, current trends and future directions is presented. The book highlights many use cases for recommendation systems: · Basic application of machine learning and deep learning in recommendation process and the evaluation metrics · Machine learning techniques for text mining and spam email filtering considering the perspective of Industry 4.0 · Tensor factorization in different types of recommendation system · Ranking framework and topic modeling to recommend author specialization based on content. · Movie recommendation systems · Point of interest recommendations · Mobile tourism recommendation systems for visually disabled persons · Automation of fashion retail outlets · Human resource management (employee assessment and interview screening) This reference is essential reading for students, faculty members, researchers and industry professionals seeking insight into the working and design of recommendation systems.